MisterNumbers

Pattern Play Math

Playsheets

Exciting time for Pattern Play Math expanding in two directions

The idea of playing with numbers goes against the serious nature of most math teaching, but it is actually much more effective than grind memorization. Kids get excited, have fun, generate a positive attitude about math, develop curiosity and learn to see and look for underlying patterns everywhere: the basis for learning for a lifetime.

SQUARES

This is an exciting time for Pattern Play Math expanding in two directions. The revolutionary video on Squaring any Number Mentally just came out and is below. There is much more on using the system for finding Square Roots, creating the 20x20 Times Table, and multiplying numbers mentally.

Squares go right through the biggest numbers on the times tables and make it easy to multiply the larger numbers together, which is where students tend to struggle most. And it is all done with addition, not multiplication.

ADDITION ON THE NUMBER WHEEL

But I am also excited about the other direction: New Patterns for Basic Addition on Number Wheels. I found many high school students struggle with basic addition and found some fascinating and powerful images using number wheels that could help pre-school through $2^{\text {nd }}$ graders have fun memorizing addition/subtraction facts. This is great because when they come to multiplication/division, they are already comfortable with the simple number wheels.

Additon direction came AFTER squares. Creating Squares is a ADDITION process, and creating the multiplication tables or individual math facts both also involve addition. As I worked with students, even Calculus students, I found that many of them struggled with basic addition. Relying on cell phones as calculators may be one reason basic math is suffering.

The two tools using Number Wheels for anchoring addition are ways to add 5 to any number, and Number Wheels that show the cool patterns of numbers that add up (in the Ones) to 10-9-8-7-6-5-4-3-2-1. The Ten-Adds are Horizontal parallel lines and Five-Adds are Vertical parallel lines. ALL ADDITION is within 2 of these lines. If a student can "see" the numbers on the wheel and their relative position, they can "see" the Ones part of the answer.

MisterNumbers Pattern Play Math Playsheets

Square Deal on Numbers 3
Creating 20x20 Times Table w/ Squares 14
Multiplication on Number Wheels 42
Addition on Number Wheels 49
Plus or Minus 5 on Number Wheels 69
Tic-Tac-Toe Squares 80
EZ Times Table 88
Two Worksheets \& Snapshots of Videos 119
Squares, 3-6-9 on TicTacToe, 4s \& $6 s$on Number Wheels, Fractions,Testimonials, Twos and Eights onNumber Wheels
Cartoon Number Coloring 234

Inservice

\author{

Tom Biesanz M.S.

 a.k.a. MisterNumbers
 Taking the "numb" out of numbers
 www.PatternPlayMath.com}

Inservice for Schools and School Districts

PRESENTATION: Learning on the Fun, Visual, and Effective Pattern Play Math Path

Tom Biesanz, MisterNumbers on Youtube (with 2 million 5-star views) and author of Right Brain Math and more. He has over 14,000 subscribers.

Do your students struggle with math or have a negative attitude about it, or themselves? Do your kids and teachers suffer in the learning process?
Experience Tom Biesanz, MisterNumbers, and discover cool tools that will amaze your teachers (and you) while they learn powerful ways to present math. Your teachers will encourage students to learn how to learn by playing with patterns.

Here is what your teachers will learn:
\checkmark This Pattern Play Math approach is visual, playful, rightbrained, and students get physically involved and have
 fun
\checkmark Uses simple techniques that makes numbers twice as easy and makes kids comfortable.
\checkmark Uses fascinating patterns like Number Wheels, the EZ Times Table, and Tic-Tac-Toe Squares with comes with worksheets that students enjoy.
\checkmark Ways for students to quickly and easily master the Eights times table, literally almost as easy as learning the Twos.
\checkmark How teachers can lead students to follow the patterns they see, which will reveal their learning style while improving attitude about school and themselves.

Math doesn't have to feel like a 4-letter word. Confidence and competence are so important to our students' school experience, and has lasting effects throughout their lives.

Introducing Tom Biesanz

Creator of Pattern Play Math, Tom Biesanz is changing math into a more fun and easy activity, with a WOW factor. Curriculum Review magazine says it "does make math fun! ... a revolutionary visual and auditory introduction to math - a welcome resource in a time when U.S.math scores are falling behind other countries."

He has done Inservice work with individual schools and school districts.
As MisterNumbers on Youtube, he has freely shared his lessons with 2 million Youtube viewers. Many of his videos are animated and are rated 5 stars. He generated that many views because dozens of reputable websites like Encyclopedia.com, HomeSchoolNews.com, WorldNews.com, WatchKnow.com share his videos as valuable teaching tools.

Tom is the author of Right Brain Math and Amazing Calendar Math Magic. He created the MisterNumbers Companion DVD for the Right Brain Math book and also 5 fascinating iphone math apps that are free.

Many math teachers have given rave reviews to his presentations at several California Math Council conventions.

Parents and teachers, as well as students, enjoy Tom's approach. He is an inspiring presenter with 7 years of Toastmaster experience and was selected as "Toastmaster of the Year" in 2011 by his club.

Education is a deep love for Tom. His mother was a teacher and five of his brothers and sisters also have been teachers. His personal connection to fun learning also includes his five grandkids

Parent Tiffany Hart says: "LOVE IT, LOVE IT, LOVE IT, LOVE IT......I have a third grader and this is working like a charm. I, myself have learned the times tables better. I'm going to send this information to my daughter's school. Thank you so very much."

Parent Jenny Adams says, "Thank you! No tears doing homework tonight! I have the hardest time trying to explain math to my child because she thinks so much differently than I do, and teachers just send home drill-and-practice worksheets that are pure torture for us. She totally got these patterns and had FUN doing it!"

Tom is the expert who can assist you in helping your kids love and understand math. They will appreciate what you are sharing with them

Square Deal on Numbers

Why learn to square numbers even if it is easy? Another benefit to squaring number include estimating multiplying two numbers together. Say you want to estimate 27×25. If you mentally square the number in the middle ($26 \times 26=676$) You know that will be very close.

AND using the patterns learned in the 20×20 Chart (see the first chart and following instructions), you can know that 27 x 25 is accurately 26 squarec -1 or 675 . The pattern is not limited by the chart. Using the patterns learned in the 20×20 chart allows a third grade student who easily learned the squares $1-20$ in a day, to create most of the 20×20 Times Table facts in their head. In the 20×20 chart you can see that the squares give answers to the toughest multiplication facts, and all multiplication facts near them.

Squares Pattern in Tens goes up by the nearest number ending in 0 or 5, divided by 5
This allows you to jump in anywhere to square any number. An example would be 32 , nearest 0 or 5 is 30 . $30 / 5=6$. See chart below.

Nearest 0 or 5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
Goes up or down	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

So the tens would start at $90(30 \times 30=900$ and the tens would be 90 and the Ones would be 0$)$. Add two sixes to get to $90+12=102$ Remember numbers ending in 3 or 7 can go from 0 or 5 , and you get the right answer either way. Most kids prefer to start at a zero.

Square a number ending in 0

900. $30 \times 30=900$.
$4 \times 4=16$ and add two zeros. $1600 \quad 40 \times 40=1600$ or 1,600 .
Square a number ending in 5
To square a number like $15,25,35,45,55,65,75,85,95,105$, etc., use a cool trick.
Take the Tens number in front of the five, call it T. Multiply $\mathrm{T} x(\mathrm{~T}+1)$ and write 25 after it. That is your answer. Example: 25 squared. Take T (here is 2) $x(T+1) 3.2 \times 3=6$ and write 25 after it. $625.25 \times 25=625$ Example: 35 squared. Take T (here is 3) $x(T+1) 4.3 \times 4=12$ and write 25 after it. $1225.35 \times 35=1225$ Example: 95 squared. Take $T($ here is 9) $x(T+1) 10.9 \times 10=90$ and write 25 after it. $9025.95 \times 95=9025$

Writing out the Squares of 1 to 50 EASILY

Watch how to make the Squares on MisterNumbers video at: https://goo.gl/wUIDs0 This is a fun and effective way to create the squares. You create the ONES (right) and TENS (left) with different patterns. Do this on a 1-50 or the 20×20 Times Table sheet (yellow squares). No multiplying and no carrying, yet this easy pattern with adding numbers up to 10 is fun, fascinating, and effective.

ONES:

\#	TENS	ONES	Directions
1		1	1-2-3-4 squared are 1-4-9-16, and may already done for you. Notice the ONES pattern of 1-4-9-6 on the right, because it is like magic, and will repeat after each zero. Just remember 1, 2, 3, 4 squared is 1-4-9-6 in the ONES. Any number like 10 squared will end in zero, so go ahead and put a 0 in the ONES column after 10-20-30-40-50, and then repeat the 1-4-9-6 below each 0 on the right. Now for more magic: Start at 50 and go up the ONES with 1-4-9-6. You can see that it is true from 1-10 on the left. The only ONES that are not filled in are squaring a number ending in 5 , and 5×5 is 25 so the ONES will always be 5 . Fill in these 5 s and you have completed the ONES column. You are half-way done.
2		4	
3		9	
4	1	6	
5	2	5	
6	3	6	
7	4	9	
8	6	4	
9	8	1	
10	10	0	

TENS:

The TENS are a really cool pattern. Notice that each 9 in the ONES has a DARK LINE under it. If not, put a line under each 9 in the Ones. Squaring numbers ending in 3 and 7 create 9 s and the lines are where the pattern changes for the Tens on the left.
Complete the squares down to $10 \times 10=100$. Look for patterns in the TENS between the lines.
The pattern is 1-2-3-4 and then (starting with the 4) 4-6-8-10. You are not at the dark line yet, so what do you think will complete the pattern?
Yup. The first pattern was going up by 1: 1-2-3-4. The second pattern goes up by 2: 4-6-8-10-12-14-16.
Now you are at another dark line and the pattern changes. What do you
think the new pattern will be?
If you guessed the new pattern will go up by 3 , you are right! (starting with 16): 16-19-22-25-28.
And yes the TENS pattern goes up by 1 after each dark line. By 1-2-3-4-5-6-7-8-9-10.
Continue down creating the TENS, so at 50 , the TENS are going up by 10 .
The last four TENS are 220-230-240-250. It is that simple.
I HOPE YOU HAVE COMPLETED THE SQUARES FROM 1-50 EASILY.
You may notice that 50 is the tenth multiple of $5(50 / 5=10)$.
And each number on the left ending with 5 or 0 divided by 5 IS the number that the TENS are going up. This is an easy way to square any single number from 1-50 (or higher) by starting from the closest 5.
But that is another page.
© MisterNumbers Pattern Play Math 2015

\#	TENS	ONES	Directions for creating Squares of numbers 1-50
1		1	Watch how to make the Squares on MisterNumbers video at: https://goo.gl/wUIDs0 This is a fun and effective way to create the squares. You create the ONES (right) and TENS (left) with different patterns. No multiplying and no carrying, yet this easy pattern with adding numbers up to 10 is fun, fascinating, and effective. ONES: 1-2-3-4 are already done for you. Notice the ONES pattern of 1-4-9-6 on the right, because it is like magic, and will repeat after each zero. Just remember 1, 2, 3,4 squared is 1-4-9-6. Any number like 10 squared will end in zero, so go ahead and put a 0 in the ONES column after 10-20-30-40-50, and then repeat the 1-4-9-6 below each 0 on the right. Now for more magic: Start at 50 and go up the ONES with 1-4-9-6. You will later see that it is true. The only ONES that are not filled in are squaring a number ending in 5 , and 5×5 is 25 so the ONES will always be 5 . Fill in these 5 s and you have completed the ONES column. You are half-way done. TENS: The TENS are a really cool pattern. Notice that each 9 in the ONES has a DARK LINE under it. Squaring numbers ending in 3 and 7 create 9s and the dark lines are where the pattern changes for the Tens on the left. Complete the squares down to $10 \times 10=100$. Look for patterns in the TENS between the lines. The pattern is 1-2-3-4 and then (starting with the 4) 4-6-8-10. You are not at the dark line yet, so what do you think will complete the pattern? Yup. The first pattern was going up by 1:1-2-3-4. The second pattern goes up by 2: 4-6-8-10-12-14-16. Now you are at another dark line and the pattern changes. What do you think the new pattern will be? If you guessed the new pattern will go up by 3 , you are right! (starting with 16): 16-19-22-25-28. And yes the TENS pattern goes up 1 after each dark line. Continue down creating the TENS, so at 50, the TENS are going up by 10. The last four TENS are 220-230-240-250. It is that simple. I HOPE YOU HAVE COMPLETED THE SQUARES FROM 1-50 EASILY. You may notice that 50 is the tenth multiple of $5(50 / 5=10)$. And each number on the left ending with 5 or 0 divided by 5 IS the number that the TENS are going up. This is an easy way to square any single number from 1-50 (or higher) by starting from the closest 5. But that is another page.
2		4	
3		9	
4	1	6	
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			

\#	TENS	ONES
1		1
2		4
3		9
4	1	6
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		

\#	TENS	ONES
1		1
2		4
3		9
4	1	6
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		

\#	TENS	ONES
1		1
2		4
3		9
4	1	6
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		

© 2015 MisterNumbers Pattern Play Math

MisterNumbers Squares Playsheet: a fun adventure!

To create the Ones-Digits: Copy 0's and 5's to right of line. See video: http://goo.gl/h811XH Put 1-4-9-6 below each zero to right of line. Put 1-4-9-6 above each zero going UP. Draw Lines under Nines (done). Number the sections between lines starting with 0 . (write 0-1-2-3-4-5-6-7-8-9-10 etc.) To create the Tens-Digits: Tens go up by 1 after each line starting at 0 . They start with (up by 0): $0-0-0-0$, (up by ones): 1-2-3-4, (up by twos): 6-8-10-12-14-16, (up by threes): 19-22-25-28, etc.
About: Thanks to Kelly Enser for the original ideal. Squares are created quickly with simple patterns and simple addition. This can be done on a blank sheet. The pattern holds no matter how high you go. Many Patterns show up. How many can you see? "Adding by 7" and "Adding by 12 " sections are split. Do have fun and let me know what you think and how fast you are: MisterNumbers@RightBrainMath.com

Number 0	Onesie	Number 0 Tensie	Onesie Number Trensie.	Onesie
1		1	1	
2		2	2	
3		3	3	
4		4	4	
5		5	5	
6		6	6	
7		7	7	
8		8	8	
9		9	9	
10		10	10	
11		11	11	
12		12	12	
13		13	13	
14		14	14	
15		15	15	
16		16	16	
17		17	17	
18		18	18	
19		19	19	
20		20	20	
21		21	21	
22		22	22	
23		23	23	
24		24	24	
25		25	25	
26		26	26	
27		27	27	
28		28	28	
29		29	29	
30		30	30	
31		31	31	
32		32	32	
33		33	33	
34		34	34	
35		35	35	
36		36	36	
37		37	37	
38		38	38	
39		39	39	
40		40	40	
41		41	41	
42		42	42	
43		43	43	
44		44	44	
45		45	45	
46		46	46	
47		47	47	
48		48	48	
49		49	49	
50		50	- 50	
How? http://goo.g	/h811XH	ow? http://goo.gl		

$\begin{array}{r} \text { Number Tensie. } \\ 0 \end{array}$	Onesie	Number Trensie. 0	Onesie	Number 50	Tensie	Onesie
1		1		51		
2		2		52		
3		3		53		
4		4		54		
5		5		55		
6		6		56		
7		7		57		
8		8		58		
9		9		59		
10		10		60		
11		11		61		
12		12		62		
13		13		63		
14		14		64		
15		15		65		
16		16		66		
17		17		67		
18		18		68		
19		19		69		
20		20		70		
21		21		71		
22		22		72		
23		23		73		
24		24		74		
25		25		75		
26		26		76		
27		27		77		
28		28		78		
29		29		79		
30		30		80		
31		31		81		
32		32		82		
33		33		83		
34		34		84		
35		35		85		
36		36		86		
37		37		87		
38		38		88		
39		39		89		
40		40		90		
41		41		91		
42		42		92		
43		43		93		
44		44		94		
45		45		95		
46		46		96		
47		47		97		
48		48		98		
49		49		99		
50		50		100		

Square Deal Play on a 20×20

Times Table
\&
Multiplication

The Squares take us down the biggest numbers in the times tables. Working from there helps us find (or confirm) hard multiplication facts using addition.

The other helpful part is that you only need to use the SN (smaller number) when you know how far apart the pair of numbers are. The hardest part of the 12×12 times table for students is the 6-12 numbers and these are easily figured out.
If Numbers are equal. They are a Square. Use and learn the Squares http://youtu.be/J6AKMvLzYwo Learning the Squares makes this all possible.

1) Numbers are one apart: $\mathrm{SN}^{2+} \mathrm{SN}$ (example is $3 \times 4=3 \times 3+3=12$
2) Numbers are two apart: Square the number between them and subtract 1 . $(S N+1)^{2}-1$ (example $3 \times 5=4^{2}-1$).
3) Numbers are three apart: Use formula for two apart +SN. $(S N+1)^{2}-1+S N$. (example $6 x 9=7^{2}-1+6$).
4) Numbers are four apart: $(S N+2)^{2}-4$. (example $4 \times 8=6^{2-4}$).
5) Numbers are five apart: Use formula for four apart +SN. $(S N+2)^{2}-4+S N$. (example $\left.4 \times 9=6^{2}-4+4\right)$.
6) Numbers are six apart: $(S N+3)^{2}-9$. (example $\left.6 \times 12=9^{2}-9\right)$. Thinking of -9 as minus $10+1$ may be easier.
7) Numbers are seven apart: Use formula for six apart +SN. $(S N+3)^{2}-9+S N$. (example $3 \times 10=6^{2}-9+3=30$.
8) Numbers are eight apart: $(S N+4)^{2}-16$. (example $=4 \times 12=8^{2}-16$ Thinking of -16 as minus $20+4$ may be easier.
9) Numbers that are nine apart: Use formula for eight apart +SN. (example= $\left.4 \times 13=8^{2}-16+4\right)$.
10) Numbers are ten apart: $(\mathrm{SN}+5)^{2}-25$. (example $\left.=5 \times 15=10^{2}-25\right)$.

You can continue this as far as your mental capacity allows. Eleven apart would be same formula as 10 apart +SN, Twelve apart would be SN+6-36. Etc.

This is based on:
$(x+1)(x-1)=x^{2}-1 \quad$ (example $\left.5 x 7:(x=6)=6^{2}-1\right)=36-1=35$
$(x+2)(x-2)=x^{2}-4$ (example 5x9: $\left.(x=7)=72-4\right)=48-4=45$
$(x+3)(x-3)=x^{2}-9$ (example 5x11: $\left.(x=8)=8^{2}-9\right)=64-9=55$
$(x+4)(x-4)=x^{2}-16$ (example $\left.6 x 14:(x=10)=10^{2}-16\right)=100-16=84$
© MisterNumbers Pattern Play Math 2015

Creating the 20x20 Times Tables with Directions

17 Playfully Creating the 20×20 Times Tables with Directions
18 Full 20×20 Times Table with Diagonal Colors
19 An Earlier Version on the Times Table
20 How to Fill out the 20×20 Times Table with Diagonals
21 The Blank Times Table (with Ones and Twos filled in)
22 Empty Table with dotted lines on Squares for Ones and Tens
23 Ones of Squares filled in on right of dotted lines: 0-1-4-9-6-5
24 Ones and Tens of Squares filled in
25 Squares in Yellow Diagonal in Place
26 Squares Mirror Image on two sides of the Times Table
27 Multiplying Numbers One Apart with Stars
28 Multiplying Numbers One Apart in Place
29 Multiplying Numbers Two Apart with Arrows from Squares
30 Multiplying Numbers Two Apart Alone
31 Multiplying Numbers One and Two Apart
32 Multiplying Numbers Three Apart
33 Multiplying Numbers Four Apart with Arrows
34 Multiplying Numbers Four Apart
35 Multiplying Numbers Five Apart
36 Multiplying Numbers Six Apart
37 Multiplying Numbers Seven Apart
38 Multiplying Numbers Eight Apart
39 Multiplying Numbers Nine Apart
40 Multiplying Numbers Ten Apart
4120×20 Times Table with Diagonals All numbers in place

Playfully Creating the 20x20 Times Table Using Squares

Patterns are powerful. To see and use patterns in numbers make a student powerful and helps them enjoy math. Looking for patterns is a game, a puzzle, and it has long term benefits in math and elsewhere because all deep learning is learning to look at underlying patterns.

Let the student discover as many of the patterns as possible. They may well find some that you have never seen, even if working with this table. Refrain from showing them the patterns, and let them find them on their own.

There are a couple ways to look at each set of numbers. Where are they on the Table? How far apart are they? What color is the box? What are the values of the diagonals in both directions?

This structure is based on the Squares of the numbers 1-20, which are designated by the yellow boxes from the top left $(1 \times 1=1)$ to the bottom right $20 \times 20=400$. The cool aspect of starting with the squares is that they go right at the biggest (hardest) numbers for kids: $6 \times 6,7 \times 7,8 \times 8,9 \times 9,10 \times 10,11 \times 11,12 \times 12$, etc

Diagonals are cool patterns. It becomes like a game. The clues are in the different ways to identify any set of numbers.
Half of the boxes are colored by diagonals.
What are the diagonal patterns in each direction?
What are the up and down patterns?
What are the right and left patterns?
Find any array (rectangle of boxes) starting from top left and what do you find?
Calculating in your head, using squares and adding or subtracting (not multiplying).
Numbers that are even numbers apart are based on squaring the middle number.
Have them fill in as many as they know of the Squares, and look for patterns in the Ones and Tens of the Squares.

Have them fill in as many as they know about the white boxes next to, and below the Squares.
What are these numbers?
How many apart are they?
Is there any pattern they can find to move from the square to that white box?
What is the difference between diagonal white boxes right to left.
There is a series of Times Tables with the Squares filled in, then the one apart numbers filled in, then two apart, three apart, four apart, etc.

Students get a sense of accomplishment as they create the Times Tables. The are CREATING MATH. From patterns.

If you don't have a colored printer, this still works. The diagonals are clear, and it is easy to identify the squares and the two apart, four apart, six apart diagonals.

CREATING THE TIMES TABLE USING SQUARES and plus and minus © MisterNumbers Pattern Play Math 2015

20×20 Times Table Practice worksheet: fill it out or find any multiplication fact It is fun. No multiplication needed. First: Easily learn the squares of 1-20 at https://goo.gl/wUIDs0 Subtract any two numbers you want to multiply and follow the rules below. You only use the SN (smaller number) and $+\boldsymbol{\&}-$. The formula is based on the fact that if numbers are 1-4-9-16-25 less than the middle square if they are 2-4-6-8-10 apart. Odd number apart? Use SN, find lower even number, and add SN. If you learn the squares you can you can figure out or confirm any multiplication fact. Half of boxes in the chart below are even numbers apart and colored. Find these and add SN for next clear box (odd apart).

1) Create the Squares to 20×20 (see MisterNumbers video https://goo.gl/wUIDs0
middle diagonal
2) Create 2 X row and column by adding each number to itself (double $1^{\text {st }}$ number).
3) Create numbers 1 apart by adding SN (Smaller Number) to square of SN.
4) Create numbers 2 apart (blue) by add 1 to SN , square that, (square middle number) minus 1 (BLUE)
5) Create numbers 3 apart by adding 1 to SN, square that, minus 1 plus SN
6) Create numbers 4 apart (green) by adding 2 to SN, squaring that, minus 4 (GREEN)
7) Create numbers 5 apart by adding 2 to SN, squaring that, minus 4 , plus SN
8) Create numbers 6 apart (pink) by adding 3 to SN, squaring that, minus 9 (PINK)
9) Create numbers 7 apart by adding 3 to SN , squaring that, minus 9 , plus $\mathbf{S N}$
10) Create numbers 8 apart (yellow) by adding 4 to SN , squaring that, minus 16
11) Create numbers 9 apart by adding 4 to SN , squaring that, minus 16 , plus $\mathbf{S N}$
12) Create numbers 10 apart (blue) by adding 5 to SN, squaring that, minus 25 (NEXT BLUE)

Based on $(x+1)(x-1)=x^{2}-1,(x+2)(x-2)=x^{2}-4,(x+3)(x-3)=x^{2}-9$, etc.

SQ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9																	
4	4	8		16																
5	5	10			25															
6	6	12				36														
7	7	14					49													
8	8	16						64												
9	9	18							81											
10	10	20								100										
11	11	22									121									
12	12	24										144								
13	13	26											169							
14	14	28												196						
15	15	30													225					
16	16	32														256				
17	17	34															289			
18	18	36																324		
19	19	38																	361	
20	20	40																		400

Middle Yellow diagonal $=$ squares
Touching Blue diagonals $=$ Squares -1
Touching Green diagonals $=$ Squares -4
Touching Pink diagonals $=$ Squares $-9($ may be helpful to subtract 10 and add 1)
Touching Yellow diagonals $=$ Squares -16 (may be helpful to subtract 20 and add 4)
Touching Blue diagonals = Squares -25 etc. Add SN to get the white squares (odd numbers apart)
Multiplying 20×20 tables mentally: This system fills in all the big facts. Use multiplication for smaller facts.
Remember: you only need to know the SN and how far apart they are. Can be expanded to 50×50 ! Enjoy! -MisterNumbers
20×20 Times Table Practice worksheet: fill it out or find any multiplication2fact It is fun. No multiplication needed. First: Easily learn the squares of 1-20 at https://goo.gl/wUIDs0 Playsheets for creating the squares to 50 are available. Notice the arrays that are numbered by boxes.

Create the squares down the middle yellow in the 20×20 Times Table Chart. The Ones and Twos are fairly easy and done in both directions. See that the Squares take you right down the middle, away from the safe shore. Yet creating the squares or finding one square is easy using the videos.

Notice the Purple diagonal boxes on both sides touching the squares. See the purple boxes that are filled in and add $3 x 5$ is 15 and 6×4 is 24 on both sides. What do you notice about the touching purple boxes and yellow squares? Do you see any pattern?

Next check out the Green boxes that touch the purple boxes. Add $3 x 7=21$ and $8 x 4=32$ on both sides. What pattern do you notice between the green and the yellow squares? Between the Purple and Green boxes?

Hopefully you are seeing some cool patterns show up. Try the red boxes. What patterns do you see between the red boxes and the yellow squares? The Purple and the Red boxes? The Green and the Red?

Add some values to the white boxes. Notice about half of the squares are colored and half are white. What is the relationship between the colored and the White below or to the right?

If you need help or get stuck: Check below, but figure out as much as you can. It is really cool.
Middle Yellow diagonal = squares
Touching Blue/Purple diagonals $=$ Squares -1
Touching Green diagonals $=$ Squares -4
Touching Pink/red diagonals $=$ Squares $-9($ may be helpful to subtract 10 and add 1$)$
Touching Yellow diagonals $=$ Squares -16 (may be helpful to subtract 20 and add 4)
Touching Blue/Purple diagonals = Squares -25 etc.

White Squares?: Add the SN (smaller number of the two) to the colored squares above or to the left (completes the table).

Multiply Any Two numbers: Subtract any two numbers you want to multiply and follow the rules below. You only use the $\boldsymbol{S N}$ (smaller number) and $+\boldsymbol{\&}$-. The formula is based on the fact that if numbers are 1-4-9-16-25 less than the middle square if they are 2-4-6-8-10 apart. Odd number apart? Use SN, find lower even number, and add $S N$.
If you learn the squares you can you can figure out or confirm any multiplication fact. Half of boxes in the chart below are even numbers apart and colored. Find these and add $S N$ for next clear box (odd apart).

1) Create the Squares to 20×20 (see MisterNumbers video https://goo.gl/wUIDs0 \quad middle diagonal
2) Create $\mathbf{2 X}$ row and column by adding each number to itself (double $\mathbf{1}^{\text {st }}$ number).
3) Create numbers 1 apart by adding SN (Smaller Number) to square of SN.
4) Create numbers 2 apart (blue) by add 1 to SN, square that, (square middle number) minus 1 (BLUE)
5) Create numbers $\mathbf{3}$ apart by adding 1 to SN , square that, minus 1 plus $\mathbf{S N}$
6) Create numbers 4 apart (green) by adding 2 to SN, squaring that, minus 4 (GREEN)
7) Create numbers 5 apart by adding 2 to SN , squaring that, minus 4 , plus $\mathbf{S N}$
8) Create numbers 6 apart (pink) by adding 3 to SN, squaring that, minus 9 (PINK)
9) Create numbers 7 apart by adding 3 to SN , squaring that, minus 9 , plus $\mathbf{S N}$
10) Create numbers 8 apart (yellow) by adding 4 to SN, squaring that, minus 16
11) Create numbers 9 apart by adding 4 to SN , squaring that, minus 16 , plus $\mathbf{S N}$
12) Create numbers 10 apart (blue) by adding 5 to SN, squaring that, minus 25 (NEXT BLUE)

[^0]CREATING THE TIMES TABLE USING SQUARES: Colored Diagonals $-1,14,-9,-16,-25$ Create Squares in Yellow Boxes using https://goo.gl/wUIDs0 Ones are 1-4-9-6 from 0 and Tens are 1-2-3-4 and 6-8-10-12-14-16 and 19-22-25-28

SQ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9																	
4	4	8		16																
5	5	10	v_{6}		25								-							
6	6	12		9		36														
7	7	14					49													
8	8	16						64												
9	9	18			θ				81											
10	10	20				8				100								9		5
11	11	22									121									
12	12	24				3						144		v_{6}						76
13	13	26											169							
14	14	28				2σ								196				\checkmark		3
15	15	30			θ								50		225					
16	16	32														256				\%
17	17	34															289			
18	18	36								0		0		v_{0}				324		
19	19	38									θ				©				361	
20	20	40										76		9		${ }^{7}$				400

CREATING THE TIMES TABLE USING SQUARES: Adding Yellow Squares (ex: 8x8)
N゙

Create Squares in Yellow Boxes using https://goo.gl/wUIDs0 Ones are 1-4-9-6 from 0 and Tens are 1-2-3-4 and 6-8-10-12-14-16 and 19-22-2																				
SQ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	,	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	,																	
4	4	8		+																
5	5	10			;															
6	6	12				;														
7	7	14					!													
8	8	16						,												
9	9	18							!											
10	10	20								'										
11	11	22									!									
12	12	24										!								
13	13	26											!							
14	14	28												,						
15	15	30													;					
16	16	32														;				
17	17	34															,			
18	18	36																,		
19	19	38																	;	
20	20	40																		!

CREATING THE TIMES TABLE USING SQUARES: Adding Ones of Squares 1-4-9-6-5

		Sq				sin	tps	0	UI		ar	-4-9	from	and	ar	-2-3	nd	0-1	-16	19
so	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	! 4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9																	
4	4	8		6																
5	5	10			5															
6	6	12				\%														
7	7	14					9													
8	8	16						4												
9	9	18							1											
10	10	20								0										
11	11	22									1									
12	12	24										4								
13	13	26											-9							
14	14	28												6						
15	15	30													5					
16	16	32														6				
17	17	34															9			
18	18	36																4		
19	19	38																	:1	
20	20	40																		0

CREATING THE TIMES TABLE USING SQUARES: Adding Yellow Squares (ex: 8x8)
Create Squares in Yellow Boxes using https://goo.g1/wUIDs0 Ones are 1-4-9-6 from 0 and Tens are 1-2-3-4 and 6-8-10-12-14-16 and 19-22-25-28

SQ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	!4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	!																	
4	4	8		$1: 6$																
5	5	10																		
6	6	12				3:6														
7	7	14																		
8	8	16																		
9	9	18							8:1											
10	10	20																		
11	11	22																		
12	12	24										141								
13	13	26																		
14	14	28																		
15	15	30													$22: 5$					
16	16	32														$25: 6$				
17	17	34															289			
18	18	36																324		
19	19	38																	36:	
20	20	40																		400

CREATING THE TIMES TABLE USING SQUARES: Mirror Image around Squares

CREATING THE TIMES TABLE USING SQUARES, Multipying Numbers one apart

CREATING THE TIMES TABLE USING SQUARES: Purple Diagonals = Squares Minus one Multiply numbers two apart? (ex: $\left.6 \times 8=7^{2}-1\right)=48=$ Square middle number $-1 \odot \mathrm{SN}^{2}=$ Smaller Number © middle number is $\mathrm{SN}+1 \odot(\mathrm{SN}+1)^{2}-1$
[

$$
\begin{aligned}
& \bar{\sim} \\
& \hline a \\
& \infty \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& = \\
& 0 \\
& = \\
& \infty
\end{aligned}
$$

$$
e
$$

$$
\begin{array}{l|l|}
& F \\
\hline & 10
\end{array}
$$

CREATING THE TIMES TABLE USING SQUARES: Adding numbers two apart (ex: 6x8) Purple boxes are one less than touching squares (ex: $\left.6 \times 8=7^{2}-1\right)=48 \odot \operatorname{SN}=$ Smaller Number © middle number is $\mathrm{SN}+1 \odot(\mathrm{SN}+1)^{2}-1$																				
so	11	2	3	4	5	\| 6	7	-8	9	10	11	12	13	14	15	16	17	18	19	20
1	1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4		8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3		9		15															
4	4	8		16		24														
5	5	10	15		25		35													
6	6	12		24		36		48												
7	7	14			35		49		63											
8	8	16				48		64		80										
9	9	18					63		81		99									
10	10	20						80		100		120								
11	11	22							99		121		143							
12	12	24								120		144		168						
13	13	26									143		169		195					
14	14	28										168		196		224				
15	15	30											195		225		255			
16	16	32												224		256		288		
17	17	34													255		289		323	
18	18	36														288		324		360
19	19	38															323		361	
20	20	40																360		400

CREATING THE TIMES TABLE USING SQUARES: Adding numbers two apart (ex: 6x8) Purple boxes are one less than touching squares $\left(\right.$ ex: $\left.6 \times 8=7^{2}-1\right)=48 \odot\left(\odot N=\right.$ Smaller Number \odot middle number is $\mathrm{SN}+1 \odot(\mathrm{SN}+1)^{2}-1$

so	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9	12	15															
4	4	8	12	16	20	24														
5	5	10	15	20	25	30	35													
6	6	12		24	30	36	42	48												
7	7	14			35	42	49	56	63											
8	8	16				48	56	64	72	80										
9	9	18					63	72	81	90	99									
10	10	20						80	90	100	110	120								
11	11	22							99	110	121	132	143							
12	12	24								120	132	144	156	168						
13	13	26									143	156	169	182	195					
14	14	28										168	182	196	210	224				
15	15	30											195	210	225	240	255			
16	16	32												224	240	256	272	288		
17	17	34													255	272	289	306	323	
18	18	36														288	306	324	342	360
19	19	38															323	342	361	380
20	20	40																360	380	400

$\stackrel{\rightharpoonup}{i} \text { N }$	$\stackrel{\text { N }}{ }$	$\stackrel{\ominus}{7}$															$\begin{aligned} & 9 \\ & \underset{\sim}{e} \end{aligned}$	$\begin{aligned} & \theta \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$$	¢
$\sum_{\frac{\pi}{2}}^{\infty} \Omega$	$\stackrel{\square}{\square}$	\cdots														寸	$\begin{aligned} & \text { M } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathbf{r} \\ & 0 \end{aligned}$	－
若	$\stackrel{\oplus}{\Gamma}$	en en													$\stackrel{e}{N}$	$\begin{array}{\|c} \infty \\ \substack{\infty \\ \sim} \end{array}$	$\underset{\sim}{e}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { N } \\ & \text { M } \end{aligned}\right.$	¢
$\begin{aligned} & \overline{y y} \\ & \text { N } \\ & \vdots \end{aligned}$	$\stackrel{ }{+}$	※												$\begin{aligned} & \infty \\ & \underset{N}{\infty} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 10 \\ \text { Nค } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathbf{\theta} \\ & \boldsymbol{e} \\ & \mathrm{N} \end{aligned}$	\|e	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	－
	$\stackrel{\ominus}{\square}$	N												$\begin{aligned} & \mathbf{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \theta \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \text { N } \\ \hline \end{array}$	$\begin{gathered} N \\ \mathbf{N} \\ \hline \end{gathered}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{N}{2} \end{aligned}$	ホ	
\cdots	$\stackrel{10}{\sim}$	$\underset{e}{e}$										$\underset{\sim}{e}$	$\begin{aligned} & 10 \\ & \hline 0 \end{aligned}$	$\stackrel{\theta}{\mathrm{N}}$	$$	$$	$\begin{aligned} & \text { In } \\ & \text { N } \end{aligned}$	$\underset{\sim}{e}$		
\pm	\pm	$\underset{\sim}{\infty}$									$\stackrel{1}{\square}$	$\underset{\sim}{\infty}$	$\begin{array}{\|l\|l\|} \underset{\oplus}{\infty} \\ \hline \end{array}$	$\stackrel{\ominus}{\circ}$	$\stackrel{\theta}{\mathrm{N}}$	$\underset{\text { N }}{\text { N }}$	$\begin{aligned} & \infty \\ & \text { N్ } \end{aligned}$			
\cdots	©	$\underset{\sim}{0}$								$\begin{aligned} & 9 \\ & \text { en } \end{aligned}$		$\begin{array}{\|l} \hline 6 \\ 10 \\ \hline \end{array}$	$\underset{6}{9}$	$\begin{gathered} N \\ \hline \end{gathered}$	$\begin{aligned} & 10 \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$				
$\begin{aligned} & \infty \\ & \pi \\ & \sim \\ & \sim \end{aligned}$	$\underset{\sim}{N}$	$\underset{\mathbf{N}}{\mathbf{N}}$							$\underset{\theta}{\infty}$	$\begin{aligned} & \mathrm{e} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~m} \end{aligned}$	毟	$\begin{array}{\|l\|} \hline 6 \\ \hline 10 \\ \hline \end{array}$	ee	$\begin{aligned} & \underset{\sim}{e} \\ & \hline \end{aligned}$					
$\stackrel{+}{+}$	F	\mathbf{N}						$\underset{\infty}{\infty}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\stackrel{\theta}{7}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\begin{gathered} \text { N } \\ \text { ल } \end{gathered}$	$\stackrel{\text { n }}{\ddagger}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~B} \\ & \hline \end{aligned}$						
$\stackrel{\circledast}{\infty}$	θ	$\underset{N}{e}$					θ	\varnothing	θ	θ	$\stackrel{\theta}{\Gamma}$	N	è							
－	\bigcirc	$\stackrel{\oplus}{\square}$				I	గ్ర	\mathfrak{N}	$\underset{\infty}{\infty}$	θ	প	$\stackrel{\otimes}{\ominus}$								
$\underset{\substack{\mathrm{z}}}{\infty}$	∞	0			$\stackrel{\ominus}{\oplus}$	$\underset{\downarrow}{\infty}$	$\begin{array}{\|c} 0 \\ 10 \end{array}$	寸	\mathbf{N}	θ	∞									
$\stackrel{\text { N }}{7}$	N	\ddagger		$\underset{\sim}{\infty}$	10	$\underset{\ddagger}{\mathbf{N}}$	9	en	గิ	$\stackrel{\ominus}{1}$										
\sim	\bullet	\mathbf{N}	$\underset{F}{\infty}$	N	er	e	$\underset{\sim}{\sim}$	$\underset{\mp}{\infty}$	+											
㐫 m	15	θ	19	$\underset{\sim}{i}$	$\stackrel{1}{\mathrm{~N}}$	er	$\begin{aligned} & 10 \\ & \mathrm{~m} \end{aligned}$	$\underset{i}{e}$												
$\sum_{i}^{5}+$	＋	∞	$\underset{\sim}{\mathbf{N}}$	φ	è	$\underset{\text { N }}{ }$	$\stackrel{\infty}{\sim}$													
$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	๓	\bullet	\square	\mathbf{N}	19	\oplus														
KN	N	キ	\bullet	∞	θ	\mathbf{N}	\pm	$\stackrel{\ominus}{\bullet}$	$\boldsymbol{\infty}$	$\stackrel{\ominus}{\mathrm{N}}$	\mathbf{N}	N	$\underset{\sim}{0}$	$\stackrel{\infty}{\boldsymbol{N}}$	er	N	জ	e	$\boldsymbol{N}_{\infty}^{\infty}$	$\stackrel{+}{+}$
－	F	N	円	†	19	\bullet	N	∞	θ	θ	F	$\underset{\sim}{N}$	$\stackrel{\cong}{\square}$	\ddagger	19	ω	N	$\underset{\sim}{\infty}$	θ	ค
$\%$	－	\sim	or	ナ	in	\bigcirc	－	∞	a	\bigcirc	$=$	\cdots	\cdots	\pm	$\stackrel{10}{\sim}$	$\stackrel{\square}{-}$	ミ	$\stackrel{\infty}{\sim}$	\bigcirc	ले

CREATING THE TIMES TABLE USING SQUAR$\mathrm{SN}=\text { Smaller Number } \quad(\mathrm{SN}+2)^{2}-4 \quad \text { ex: } 2 \times 6=4^{2}-4=12$														$4 \text { Apart }=\text { Squares }-4$ © MisterNumbers Pattern P					y Math 2015	
SQ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6		10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9^{\prime}	12		18	21													
4	4		12	16	20		28	32												
5	5	10		20	25	30		40	45											
6	6	12			30	36	42		4	60										
7	7	14	21	28		42	49	56		70	77									
8	8	16		32	40		56	64	72		88	96								
9	9	18			45	54		72	81	90	/	108								
10	10	20				60	70		90	100	110		130	140						
11	11	22					77	88		110	121	132		154	165					
12	12	24						96	108		132	144	156		180	192				
13	13	26							117	130		156	169	182		208	221			
14	14	28								140	154		182	196	210		238	252		
15	15	30									165	180		210	325	240		270	285	
16	16	32										192	208		240	256	272		304	320
17	17	34											221	238		272	289	306		340
18	18	36												252	270		306	324	342	
19	19	38													285	304		342	361	380
20	20	40														320	340		380	400

Numbers 4 apart: Find Green Box on diagonal (Square -4) How would you find the numbers in the next white boxes? © 2015MisterNumbers Pattern Play Math

\cdots	N	9							
5	の	¢							
$\underset{\sim}{\infty}$	$\stackrel{\infty}{-}$	0							
N	N	＋							
${ }_{5}^{2}$	－	N							
$\sum_{0}^{\text {an }}$	19	－							
\pm	キ	$\stackrel{\sim}{\sim}$							
9	－	N							－
$\simeq \simeq$	N	N						\bigcirc	${ }^{\circ}$
$=$	F	N					N	㬂	月
＂	－	ผิ				8	R	${ }^{\circ}$	8
\％	9	$\stackrel{\infty}{\square}$			$\stackrel{10}{+}$	H	ก	N	－
$\pm \infty$	∞	\cdots		N	¢	＋	$\stackrel{0}{0}$	先	N
	N	\pm	$\stackrel{\Gamma}{\sim}$	N	¢	N	9	Lin	กู
\bigcirc	\bigcirc	N	$\stackrel{\sim}{\sim}$	N	－	－	N	$\stackrel{\oplus}{+}$	枵
发	10	$\stackrel{-}{-}$	$\stackrel{10}{\square}$	N	ค	－	¢	¢	$\stackrel{1}{8}$
此 +	＋	∞	N	$\stackrel{\rightharpoonup}{-}$	－	N	－	N	
部	ค	\bigcirc	の	N	19	¢	$\stackrel{\text {－}}{ }$		
幺	N	\pm	\bullet	∞	을	N	\pm	\bigcirc	$\stackrel{\infty}{\sim}$
	－	N	ल	＋	19	\bigcirc	N	∞	
$\%$	－	N	m	\checkmark	in	\bigcirc	－	∞	

$\stackrel{\sim}{1}$	$\stackrel{\ominus}{\mathrm{N}}$	$\underset{i}{ }$													$\underset{\substack{e \\ e \\ \hline}}{ }$	－	$\begin{aligned} & \text { er } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 9 \\ & 6 \\ & 0 \end{aligned}$	¢	$\underset{+}{8}$
\bigcirc	σ	$\left\lvert\, \begin{aligned} & \infty \\ & \text { M } \end{aligned}\right.$												$\begin{aligned} & \mathbf{o} \\ & \mathbf{0} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 10 \\ & \boldsymbol{\theta} \\ & \mathbf{N} \end{aligned}$	$\underset{\text { M }}{\underset{\sim}{2}}$	$\begin{aligned} & \text { M } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 5 \\ & \omega \\ & \hline \end{aligned}$	¢
\cdots	$\stackrel{e}{F}$	$\left\lvert\, \begin{aligned} & 0 \\ & \text { M } \end{aligned}\right.$											$\begin{aligned} & \text { H } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \\ & \hline \end{aligned}$	$\underset{\sim}{i}$	$\begin{aligned} & e \infty \\ & e \infty \\ & N \end{aligned}$	$\begin{aligned} & e \\ & e \\ & e \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \stackrel{+}{2} \end{aligned}$	¢
－	N	侕										$\underset{\mathbf{N}}{\mathbf{N}}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{n} \\ & \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \theta \\ & \theta \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & e \\ & e \\ & e \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\underset{\sim}{\oplus}$
$\stackrel{\square}{-}$	$\underset{F}{ }$	$\begin{aligned} & \mathbf{N} \\ & \mathrm{M} \end{aligned}$									$\stackrel{\rightharpoonup}{*}$	$\begin{aligned} & \mathrm{N} \\ & \boldsymbol{\gamma} \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\boldsymbol{N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{1} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{\infty} \\ & \stackrel{1}{2} \end{aligned}$	广	－
10	10	$\underset{m}{e}$								$\begin{array}{\|l} \boldsymbol{e} \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 6 \\ & \hline \end{aligned}$	θ	$\begin{aligned} & 10 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\ominus}{\mathrm{N}}$	$\begin{aligned} & \mathbf{1} \\ & \text { N } \end{aligned}$	$\stackrel{\ominus}{i}$	$\begin{aligned} & 18 \\ & \stackrel{18}{10} \\ & \hline \end{aligned}$	$\begin{aligned} & \theta \\ & N \end{aligned}$	$$	$\underset{e}{e}$
士	$\underset{~}{~}$	$\left\lvert\, \begin{aligned} & \boldsymbol{\infty} \\ & \mathbf{N} \end{aligned}\right.$							$\begin{aligned} & \text { N } \\ & \mathbf{N} \end{aligned}$	$\underset{F}{i}$	1	$\begin{aligned} & \boldsymbol{\theta} \\ & \boldsymbol{\theta} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \boldsymbol{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \nabla \end{aligned}$	$\stackrel{\ominus}{\mathrm{N}}$	$\begin{aligned} & \mathrm{N} \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \\ & \text { N } \\ & \hline \end{aligned}$	
\cdots	$\stackrel{\oplus}{\rightleftharpoons}$	$\left\lvert\, \begin{aligned} & 0 \\ & \mathbf{N} \end{aligned}\right.$						$\underset{i}{i}$	$\stackrel{N}{V}$	คे	$\underset{7}{7}$	$\begin{aligned} & 6 \\ & 10 \\ & \hline \end{aligned}$	$\hat{9}$	$\begin{gathered} N \\ \underset{\sim}{N} \\ \hline \end{gathered}$	$$	$\stackrel{\otimes}{\infty}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { + } \\ & \text { N } \end{aligned}$		
N	\mathbf{N}	$\underset{\mathbf{N}}{\mathbf{N}}$					\pm	θ	$\underset{\ominus}{\boldsymbol{\theta}}$	$\begin{aligned} & \dot{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \text { N } \end{aligned}$	$\underset{~+~}{~+~}$	$\begin{aligned} & 6 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \theta \\ \ominus \end{gathered}$	$\underset{\infty}{\infty}$	N	$\underset{\mathbf{N}}{\stackrel{\rightharpoonup}{2}}$			
ت	F	\mathbf{N}				0	\mathbf{N}	∞	ब	$\underset{F}{F}$	$\stackrel{\Gamma}{\mathbf{N}}$	$\begin{aligned} & \text { N } \\ & \text { लि } \end{aligned}$	$\stackrel{\oplus}{\mathrm{F}}$	＋	$\begin{aligned} & 10 \\ & 6 \end{aligned}$	$\stackrel{e}{N}$				
O	θ	$\underset{\mathbf{N}}{\boldsymbol{N}}$			$\boldsymbol{\theta}$	θ	θ	∞	θ	θ	붙	$\begin{aligned} & \stackrel{\ominus}{\mathrm{N}} \\ & \hline \end{aligned}$	ค	$\underset{F}{\ominus}$	$\begin{aligned} & 9 \\ & 19 \end{aligned}$					
\bigcirc	\bigcirc	$\underset{F}{\infty}$		e	10	I	0	\mathbf{N}	$\underset{\infty}{\Gamma}$	θ	ब	$\stackrel{\theta}{\ominus}$	$\stackrel{N}{N}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{N} \end{aligned}$						
∞	∞	$\stackrel{\theta}{\square}$	$\underset{\mathbf{N}}{\mathbf{N}}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\underset{\sim}{\theta}$	$\underset{+}{\infty}$	\|o	子	\mathbb{N}	θ	${ }_{\infty}^{\infty}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\underset{F}{*}$							
－	N	$\underset{F}{7}$	$\underset{\mathbf{N}}{\mathbf{N}}$	$\stackrel{\infty}{\boldsymbol{N}}$	10	$\underset{\mathbf{N}}{\mathbf{N}}$	$\stackrel{\ominus}{+}$	e	セo	$\stackrel{\ominus}{\lambda}$	N	$\underset{\infty}{+}$								
\bigcirc	\bullet	\mathbf{N}	$\stackrel{\infty}{\sim}$	$\underset{\mathbf{N}}{\mathbf{N}}$	$\underset{m}{e}$	e	$\underset{\sim}{\mathbf{N}}$	$\stackrel{\infty}{+}$	+	θ	ϑ									
10	$1 \bigcirc$	θ	م	$\underset{N}{\boldsymbol{N}}$	$\stackrel{10}{\mathbf{N}}$	er	10	θ	$\stackrel{10}{7}$	ρ										
－	＊	∞	\mathbf{N}	ϑ	$\underset{N}{e}$	$\underset{\text { N }}{\mathbf{N}}$	$\stackrel{\infty}{N}$	N	o											
\cdots	セ	0	\bigcirc	\mathbf{N}	10	ω	$\underset{\mathbf{N}}{\mathbf{N}}$	$\underset{\mathbf{N}}{\underset{\sim}{n}}$												
N	N	\pm	\bullet	∞	θ	$\underset{N}{N}$	亡	$\stackrel{\rightharpoonup}{*}$	$\underset{\sim}{\infty}$	$\underset{\mathbf{N}}{\stackrel{\rightharpoonup}{2}}$	\mathbf{N}	$\underset{\mathbf{N}}{\mathbf{N}}$	$\begin{aligned} & 0 \\ & \mathbf{N} \end{aligned}$	$\stackrel{\infty}{\mathbf{N}}$	$\underset{\rho}{e}$	N	※	$\begin{aligned} & 0 \\ & \text { M } \end{aligned}$	$\begin{aligned} & \infty \\ & \end{aligned}$	$\underset{\sim}{\ominus}$
－	F	N	\cdots	＊	18	\bigcirc	N	∞	θ	$\underset{F}{\theta}$	F	\mathbf{N}	$\stackrel{セ}{\oplus}$	$\underset{F}{*}$	19	ϑ	N	${ }_{\sim}^{\infty}$	앙	$\stackrel{\text { N }}{\text { N }}$
$\%$	\checkmark	N	\cdots	ナ	in	\bigcirc	n	∞	a	θ	F	\sim	\cdots	\pm	\cdots	\bigcirc	N	\cdots	\bigcirc	N

[^1]
 $\mathrm{SN}=$ Smaller Number $\quad(\mathrm{SN}+3)^{2}-9+\mathrm{SN} \quad$ ex $\cdot 2 \mathrm{x} 9=52-9+2=18 \quad$ © MisterNumbers Pattern Play Math 2015

 \square

 \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|}
144 \& 160 \& 176 \& 192 \& 208 \& 224 \& 240 \& 256 \& 272 \& 288 \& 304 \& 320

\hline

\hline 170 \& 187 \& 204 \& 221 \& 238 \& 255 \& 272 \& 289 \& 306 \& 323 \& 340

\hline

198 \& 216 \& 234 \& 252 \& 270 \& 288 \& 306 \& 324 \& 342

\hline

228 \& 247 \& 266 \& 285 \& 304 \& 323 \& 342 \& 361 \& 380

\hline
\end{tabular} 8

SN = Smaller Number							$(\mathrm{SN}+4)^{2}-16$		ex: $2 \times 10=6^{2}-16=20$					(5) MisterNumbers Pattern Play Math 2015						
SQ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9	12	15	18	21	24	27	30	33									
4	4	8	12	16	20	24	28	32	36	40	44	48								
5	5	10	15	20	25	30	35	40	45	50	55	60	65							
6	6	12	18	24	30	36	42	48	54	60	66	72	78	84						
7	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105					
8	8	16	24	32	40	48	56	64	72	80	88	99	104	112	120	128				
9	9	18	27	36	45	54	63	72	81	90	99	108	117	126	135	144	153			
10	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180		
11	11	22	33	44	55	66	77	88	99	110	121	132	143	154	165	176	187	198	209	
12	12	24		48	60	72	84	99	108	120	132	144	156	168	180	192	204	216	228	240
13	13	26			65	78	91	104	117	130	143	156	169	182	195	208	221	234	247	260
14	14	28				84	98	112	126	140	154	168	182	196	210	224	238	252	266	280
15	15	30					105	120	135	150	165	180	195	210	225	240	255	270	285	300
16	16	32						128	144	160	176	192	208	224	240	256	272	288	304	320
17	17	34							153	170	187	204	221	238	255	272	289	306	323	340
18	18	36								180	198	216	234	252	270	288	306	324	342	360
19	19	38									209	228	247	266	285	304	323	342	361	380
20	20	40										240	260	280	300	320	340	360	380	400

CREATING THE TIMES TABLE USING SQUARES: Adding numbers Nine apart (ex: 2x11)

	CREATING THE TI SN = Smaller Number						$(\mathrm{SN}+5)^{2}-25 \quad$ ex: $2 \times 12=7^{2}-25=24$								© MisterNumbers Pattern Play Math 2015					
sQ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9	12	15	18	21	24	27	30	33	36	39							
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56						
5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75					
6	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96				
7	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119			
8	8	16	24	32	40	48	56	64	72	80	88	99	104	112	120	128	136	144		
9	9	18	27	36	45	54	63	72	81	90	99	108	117	126	135	144	153	162	171	
10	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
11	11	22	33	44	55	66	77	88	99	110	121	132	143	154	165	176	187	198	209	220
12	12	24	33	48	60	72	84	99	108	120	132	144	156	168	180	192	204	216	228	240
13	13	26	39	52	65	78	91	104	11	130	143	156	169	182	195	208	221	234	247	260
14	14	28		56	70	84	98	112	126	140	154	168	182	196	210	224	238	252	266	280
15	15	30			75	90	105	12	135	150	165	180	195	210	225	240	255	270	285	300
16	16	32				96	112	12	144	160	176	192	208	224	240	256	272	288	304	320
17	17	34					119	13	15	170	187	204	221	238	255	272	289	306	323	340
18	18	36						144	16	180	198	216	234	252	270	288	306	324	342	360
19	19	38							171	1190	209	228	247	266	285	304	323	342	361	380
20	20	40								200	220	240	260	280	300	320	340	360	380	400

CREATING THE TIMES TABLE USING SQUARES: All Facts in Place

Create on the Diagonals from Squares and watch for Patterns																				
SQ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	5	54	57	60
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	2	6	80
5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
6	6	12	18	24	30	36	42	48	5	6	66	72	78	84	90	96	119	119	119	0
7	7	14	21	28	35	42	49	56	63	7	77	84	91	98	105	112	119	119	119	140
8	8	16	2	32	40	48	5	64	72	80	88	99	104	1	120	128	136	144	119	0
9	9	18	27	36	45	5	63	72	81	90	99	108	117	12	135	144	153	162	171	0
10	10	20	30	40	50	60	70	80	90	10	11	120	130	1	150	160	170	180	190	200
11	11	22	33	44	55	66	77	88	99	1	121	132	143	1	165	176	7	198	209	220
12	12	24	33	48	60	72	84	99	10	120	132	144	156	1	0	192	204	216	228	0
13	13	26	39	52	65	78	91	10		130	14	156	9	182	195	208	221	234	247	260
14	14	28	42	5	70	8	9	1	126		154	168	182	196	210	224	238	252	266	280
15	15	30	45	60	75	90	10	12			165	180	19	210	225	240	255	270	285	300
16	16	32	48	64	80	96	11	12	14	160	176	192	20	22	240	256	272	288	304	320
17	17	34	51	68	85	10	11	13			18	204	2	23	255	272	289	306	323	340
18	18	36	54	72	90	10	12				198	216	23	252	270	288	306	324	342	360
19	19	38	57	76	95	11	13	15	17		209	228	247	266	285	304	323	342	361	380
20	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400

$$
\begin{gathered}
\text { Number } \\
\text { Wheels }
\end{gathered}
$$

Ten Adds and
Multiplication

Ten-Adds (Pairs of numbers that add up to 10)

ALL ADDITION FALLS WITH PLUS OR MINUS 2 OF THE FIVE-ADDS OR TEN-ADDS Start with the 5 at the bottom of the Ten-Add Number Wheel. It is alone, so double it and it add up to ten. Think of your two hands. You have five fingers on each hand, and ten finger in all. A great way to look at numbers adding up to ten. Have a student look at his hands and hold a ruler between the hands. Still ten fingers, but separated by the ruler into $5+5$. Move the ruler to divide the fingers into $4+6$. Still 10 fingers. $3+7,2+8,1+9.0+10$. Then slowly step down to $9+1,8+2$, etc down to $0+10$. Keep asking how many fingers they have.
The other way to do this is to use five coins in each hand (pennies or quarters?). This is $5+5=10$. Place one coin from the left hand into the right and you have $4+6=10$. Still ten coins. Add another coin makes it $3+7=10$. Go down to $0+10=10$ and then back to $10+0=10$. Always ten coins and remembering which numbers go together.
Now look at the Ten-Add Number Wheel and have kids see that the numbers across from each other (making parallel lines) add up to 10 . If they can visualize the wheel, they can SEE the Ten-Adds. Give them one number and see if they can SEE the Ten-Add pair. Spend time daily to anchor these Ten-Add pairs.
Give kids numbers that add up to ten, and let them respond with " 10 ". Give them $7+4$ and see if they can identify that it is one more than a ten-add, or 11 . Give them orally or worksheets that are within one of Ten-adds (pairs of numbers that add up to 9,10 , or 11.)
Stretch this to numbers that add up to $8,9,10,11$, or 12 (within 2 of a Ten-Add).
This also includes numbers that add up to 20, 30, 40 etc.

Five-Adds (Pairs of numbers that add up to 5)

Do the same thing with a Five-Add Number Circle. Numbers that add up to 5 or 15 (end in 5) create vertical lines on the number wheel. Use the ruler with one hand and separate the fingers into $1+4=5$, $2=3=5,3+2=5,4+1=5$ and $5+0=5$. This is the middle and the right vertical lines on the Number Wheel. Ask students about the number pairs on the left. They all add up to $15.6+9=15,7+8=15,8+7=15$, and $9+6=15$.
These numbers can also be thought of as "more than 5 " add up to 5 that way $(6+9$ becomes $1+4=5)$ Work with students to anchor the numbers that add up to 5 orally or with worksheets.
Expand this to plus or minus 2 (3 to 7).

Nine-Adds (Pairs of numbers that add up to 9)

Nine adds are parallel, and down one from Ten-Adds. Cool. If you say the numbers going around clockwise, they also give you the Nines times tables: 09-18-27-36-45-54-63-72-81-90.

Cube Numbers and Ten Adds

Another place that Ten Adds show happens when any number is cubed.

Numbers ending in:	Cube ends in:
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$
2	$\mathbf{8}$
3	7
4	4
5	5
6	6
7	3
$\mathbf{8}$	2
$\mathbf{9}$	$\mathbf{9}$

Most cubes end in the same number as the Ones of the root number.
The four exceptions are 2, 3, 7, and 8. All of them end in their Ten-Add pair: 2-8, 3-7, 7-3, and 8-2.

Visualize Number Wheels

Fours on a Number Circle: An Atomic STAR

Go around the numbers $4,8,2,6$, and 0 in the circle and make a STAR. Each time you reach 0 , jump out one ring and go around again clockwise. The rings keep getting bigger and bigger and contain all the Fours.

Create $2 \mathrm{~s}, 4 \mathrm{~s}, 6 \mathrm{~s}, 8 \mathrm{~s}$ on these tables

NUMBER WHEEL TABLES ARE IN ROWS OF 5: 5, 10, 15, 20, ETC
©MisterNumbers Pattern Play Math

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

Create the $2 \mathrm{~s}, 4 \mathrm{~s}, \mathbf{6 s}, 8 \mathrm{~s}$, and $12 \mathrm{~s}, 14 \mathrm{~s}, 16 \mathrm{~s}, \mathbf{1 8}_{0}^{18 \mathrm{~s}}$
Create your Own Two and Twelves

2	4	-6	8	0
2	-4	-6	-8	0
2	-4	-6	8	0
2	-4	\ldots	-8	0

Create your Own Eights and Eighteens

Create your Own Fours and Fourteens

4	8	2	6	0
4	8	2	6	0
4	8	2	6	0
4	8	2	6	0

Create your Own Sixes and Sixteens

The ones-digits repeat for each factor set. Start the tens-digits with 0 and add 1

6	2	8	4	0
6	2	8	4	0
6	2	8	4	0
6	2	8	4	0

 each time the column has a smaller number to its left, indicated by an above

FREE NUMBER WHEEL Iphone APP BY MISTERNUMBERS

I have FIVE IPHONE APPS and I have temporarily made them all FREE (ENJOY)
This one allows kids to create all numbers on the Number Wheel from 1-9.
Link is
Wheel Math Wheel Fun Iphone App
http://itunes.apple.com/us/app/wheel-math-wheel-fun/id387151566?mt=8
2) TTT †imes Table http://itunes.apple.com/us/app/tic-tac-toe-times-table/id395176671?mt=8
3) Wheel math 4 U http://itunes.apple.com/us/app/wheel-math-4-u/id395487961?mt=8
4) TTT Threes http://itunes.apple.com/us/app/tic-tac-toe-threes/id400623591?mt=8
5) TTT Sevens http://itunes.apple.com/us/app/tic-tac-toe-sevens/id400622245?mt=8

The Wheel Math apps work on iphone, but not on ipads, the other three work on both iphone and ipad.
-MisterNumbers

Addition
 on
 Number
 Wheels

Ones

Twos

Threes

Add circled numbers to themselves (examples $1+1=2$ and 6+6=12)

Fours

Sevens

Fives

Sixes
OPattern Play Math 2014

©MisterNumbers Pattern Play Math 2015

Fours

Fives

Sixes

Instructions for Learning Addition on the Number Wheel

Look at any or all of the Addition Number Circles.
Let kids explore these ten number wheels. What do they see? What can they figure out? Let them own it!
Help for you or them if needed:
Let's start with 4: Pairs of Numbers whose sum ends in Four.
Look at the two ends of the arrow
Look at the circled numbers that are left alone
Add any of these two numbers and the sum will end in 4
To visualize this, start with seeing in your head the number wheel with 0 on top and 5 at the bottom.
It will help to make your own
Now see a line from 0 to any other number on the wheel.
Those two numbers will easily add up to the number other than 0 , right? Example 0 and $9=9$
See that all parallel lines add up to that number. Example $8+1,7$ and 2,6 and 3,5 and 4, and their opposites.
With another even number (example 8) 0 and 8 add up to 8 .
Also 1 and 7, 2 and 6,3 and 5 .
Even numbers leave two numbers alone on the outside, here the 4 and 9 are on the edge without a paired number. DOUBLE these numbers: 4 plus $4=6$ and 9 plus $9=18$. These numbers also end in 8 .
Imagine a parallel line touching the circle starting at the 4 and see in your mind another 4 at the end of that line, Or a nine at the end of the line from the 9 .

This will be true for all even numbers.
Draw 0 to 6 and parallel lines to 1 and 5, 2 and 4, 9 and 7 . The sum of these all numbers end in 6 . 3 and 8 are alone on the edge. Double 3 and 8 to get numbers ending in 6

Draw 0 to 4 and parallel lines to 1 and 3,9 and 4,8 and 6 . The sum of these numbers all end in 4 . 2 and 7 are alone on the edge. Double 2 and 7 to get numbers ending in 4 .

Draw 0 to 2 and parallel lines to 9 and 5, 8 and 4, 7 and 5 . The sum of these all numbers end in 2 . 1 and 6 are alone on the edge. Double 1 and 6 to get numbers ending in 2

Numbers that add up to ten ending in 0 , another even number
You can't draw a (example 0) 0 and 8 add up to 8 .
Look at the numbers that add up to ten Start with 5 and 5 . Circle the 5.
Imagine 5 pennies in each hand. You have ten pennies, right?
Take one from your right hand and put it in your left hand. You still have 10 pennies! 6 and 4
Put another penny from your right hand and put it in your left hand. You still have 10 pennies! 7 and $3=10$
Put another penny from your right hand and put it in your left hand. You still have 10 pennies! 8 and $2=10$
Put another penny from your right hand and put it in your left hand. You still have 10 pennies! 9 and $1=10$
All these pairs of numbers have created horizontal lines. With 5 on the bottom and 0 on the top alone.
Put another penny from your right hand and put it in your left hand. You still have 10 pennies! 10 and $0=10$
Notice that the arrows from 0 and to the right add up to the number: example is $5: 0$ and 5,1 and 4,2 and $3=5$ Lines on the left $=15: 6$ plus 9 and 7 plus 8.

Plus or Minus 5 is VERY helpful Number Wheel for kids.

Number Wheel Ten-Adds: Numbers that add up to TEN

All Addition (Ones) is within 2 of the 5 and 10 Add Number Circles

Ten Adds and Nine Adds

Importance of students learning Ten Adds

Our number system is ten base so Ten, and the numbers that add up to 10, are very important for kids when learning addition, subtraction and multiplication, They show up on the number wheel in cool ways that can help kids with basic addition. Start with the five at the bottom.

Cube Numbers and Ten Adds

Another place that Ten Adds show happens when any number is cubed.

Numbers ending in:	Cube ends in:
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$
$\mathbf{2}$	$\mathbf{8}$
$\mathbf{3}$	7
$\mathbf{4}$	$\mathbf{4}$
$\mathbf{5}$	$\mathbf{5}$
$\mathbf{6}$	$\mathbf{6}$
7	$\mathbf{3}$
$\mathbf{8}$	$\mathbf{2}$
$\mathbf{9}$	$\mathbf{9}$

Most cubes end in the same number as the Ones of the root number.
The four exceptions are 2, 3, 7, and 8. All of them end in the Ten Add of the original Ones digit.

Learning Ten Adds on a Number Wheel

Start at the 5 at the bottom of the number wheel. It is all alone there. You can circle (and double an alone number. $5+5=10$. We have 10 digits (fingers) and 10 digits (numbers) and our number system is ten based BECAUSE humans have 10 fingers.
To be more flexible, have five pennies in each hand. Again $5+5=10$.
Now put one penny from the right hand into the left hand. We still have 10 pennies, but now $6+4=10$.
Now put another penny from the right hand into the left hand. We still have 10 pennies, but now $7+3=10$.
Now put another penny from the right hand into the left hand. We still have 10 pennies, but now $8+2=10$.
Now put another penny from the right hand into the left hand. We still have 10 pennies, but now $9+1=10$.
Now put the last penny from the right hand into the left hand. We still have 10 pennies, but now $10+0=10$.
On the number wheel horizontal parallel lines show us the Ten Adds.

Nine Adds

Look at the Ten Adds on a number Wheel. Raise all the right side up one number to create Nine Adds. Again we have parallel lines and the numbers linked not only show all the numbers adding up to 9: 0-9, 1-$8,2-7,3-6,4-5,5-4,6-3,7-2,8-1,9-0$ as we go around, but they also are revealing the Nines times table: 9-18-27-36-45-54-63-72-81-90. See the Nines Add Wheel

Nine-Adds on a Number Wheeel

Playing with numbers that add up to Nine Close to Ten-Adds (down to left) create the Nines

Go Around Clockwise from 0 to create the Nines Times Table Start at 0 and follow the line. Then at 1 and follow the line. Continue around the circle to create the NINES.

Fill in the missing Nines below

$\begin{aligned} 18 & =_\times 9 \\ 7 & =3 \times 9\end{aligned}$	$\begin{aligned} & __{8}=2 \times 9 \\ & 27=_\times 9 \end{aligned}$	$\begin{aligned} 5 _ & =6 \times 9 \\ 3 & =7 \times 9\end{aligned}$	$\begin{aligned} & -=6 \times 9 \\ & 63=_\times 9 \end{aligned}$
3_ = 4×9	_6 = 4×9	$72=\ldots \times 9$	_2 = 8×9
45 =	= $5 \times$	$=9 \times 9$	$81=\ldots \times 9$
= 6×9	$54=\ldots \times 9$	$\ldots=10 \times 9$	x 9

Find Nines Times Table by going around from 0 on this Wheel

Add any of these two numbers and the sum will end in 8

${ }^{66}$ Jllake ङevene ${ }^{9}$

Add any of these two numbers and the sum will end in 7

Add any of these two numbers and the sum will end in 4

Add any of these two numbers and the sum will end in 5

Add any of these two numbers and the sum will end in 4

Add any of these two numbers and the sum will end in 3

${ }^{66}$ JILake Twos"

Number Wheel

Add any of these two numbers and the sum will end in 2

Add any of these two numbers and the sum will end in 1

Number Wheels

Practice Number Wheels for any Numbers

Ones

Twos

Threes
© 2010 Tom Biesanz (Mister Numbers)

Fours

Sevens

Fives

Eights

Sixes

Nines
RightBrainMath.com

${ }^{6}$ Plus or
 Minus 5",
 Number
 Wheels

Plus or Minus 5 Number Wheel

See the Plus or Minus 5 Number Wheel.
"Jlake Five" All

Add Five to any number and it will take you across the wheel to the left to the answer, or to the right with a 1 in front.

Start at 0 and add 5 . You go half way around the wheel to 5 . Add another 5 and go half way around back to 10 (0). The number wheel only plays with the Ones and so 10 shows up as 0 .

Again add 5 and go half way around (down to 5) to 15 . Then back up to 20 (up to zero). This is like a yo-yo going up and down 5-10-15-20-25-30-35-40-45-50, and so forth.

We can also start at any number and subtract 5 by going half way around.
We can also add 5 from any other number. Start at 1 and add 5 (go half way around to 6). Add five again and go back to 1 (or 11). Add 5 again to go to 16. This is great fun because kids see it is just going back and forth from 1 to 6 to 1 to 6 , whether you are adding or subtracting.

The same thing applies for 2 and 7,3 and 8 , and 4 and 9 , and of course the reverse numbers.
Really fun.
© Pattern Play Math 2015

Plus or Minus 5 is VERY helpful Number Wheel for kids.

Many kids end up counting on their fingers. When they play with these Number Wheels, they find it much quicker and easier..Look at any or all of the Plus or MinusAddition Number Circles.
Let kids explore these number wheels. What do they see? What can they figure out? Let them own it!
Help for you or them if needed:
Start with 0 and add by fives: $5,10,15,20,25,30,35,40,45,50$. Almost all kids can do this easily and maybe even sing it with a "Here I come, Ready or Not"

But it works from any number.
P.s. they can go one more or one less than 5 , to add 4 or 6 to any number. Just add or subtract 1 .

Or to add 3 or 7. Just add or subtract 2. Still easy.
A great tool is to go back to their fingers, but use them to jump 5 or subtract 5 .
Hold out both hands with fingers up. Turn one hand so both thumbs are on the left.
Count from 1 to 10 starting from the left. Great.
Now notice that 1 and 6 are both thumbs
Wiggle each thumb as you count from 1 (left thumb) to 6 (right thumb) to 11 (left thumb) to 16 (right thumb).
Continue to 21 (left thumb) to 26 (right thumb) to 31 (left thumb) to 36 (right thumb). How high can you go?

Wiggle each thumb as you count from down from 36 (right thumb to 31 (left thumb) to 26 (right thumb).
Coninue to 21 (left thumb) to 16 (right thumb), to 11 (left thumb) to 6 (right thumb) to 1 (left thumb).
Now do it from 2, your pointer finger on your left hand, to 7, wiggle your pointer finger on your right hand.
Continue to 12 (wiggle left pointer) to 17 (wiggle right pointer) to 22 (wiggle left pointer) to 27 (wiggle left pointer).
Go as high as you like and then subtract Fives. To up or down five from any 2 or 7.
Now do it from 3, your long finger on your left hand, to 8 , wiggle your long finger on your right hand. Continue to 13 (wiggle left long finger) to 18 (wiggle right long) to 22 (wiggle left long) to 27 (wiggle left long).
Go as high as you like and then subtract Fives. To up or down five from any 3 or 8 .
Now do it from 4, your ring on your left hand, to 9 , wiggle your ring finger on your right hand.
Continue to 14 (wiggle left ring finger) to 19 (wiggle right ring) to 24 (wiggle left ring) to 29 (wiggle left ring).
Go as high as you like and then subtract Fives. To up or down five from any 4 or 9 .
Play with starting at 5 (your little finger). Easy, right? 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
Play often with counting by fives on your fingers and see how easy it is.
© 2015 MisterNumbers Pattern Play Math

Handy Trick for Adding or Subtracting Five from any Number

| see the Number Wheel for adding or |
| :--- | :--- |
| subtract |

Hold both hands in front of you with the thumbs left (see picture: looking at the palm of your left hand and the back of your right hand). If you start with your left thumb as 1 (wiggle it), then see your right thumb as 6 (wiggle your sixth finger). You have just added 5 to 1 and got 6 . Now add another 5 and see that it takes you back to your left thumb at 11 and wiggle it (we are focusing on the Ones and the Tens are easy). Add another 5 to 11 and you are at your right thumb as 16 . Add another 5 , and of course you are back to your left thumb at 21 . Go to 26 , to 31 , to 36 , to 41 , and see that 6 and 1 are across the number wheel and you can go half way around each time.

What is cool is that you can also subtract 5 using your hands and/or the wheel, because subtracting 5 also takes you exactly half way around the wheel. Let's start at 26 with our right thumb and subtract 5 and wiggle your left thumb at 21 (or go half way around the number wheel to 1).
Subtract 5 again from 21 and you are back to your right thumb at 16, then to 11 (left thumb) and 6 (right thumb) and subtract 5 to get to 1 on your left thumb. Look at your thumbs and see the jumps from 1 to 6 and to 1 . Do this daily for two weeks and 1 and 6 are connected in your mind, and it will always be easy to add or subtract 5 from 1 or 6 .
Repeat adding and subtracting 5 using your pointer fingers. Can you see that these are twos and sevens? Can you see that 2 and 7 are exactly half way around the Number Wheel? Look at your hands and count up and down from 2-7-12-17-22-27-32-37-42-47 and higher. Do this also daily for two weeks and 2 and 7 are connected in your mind, and it will always be easy to add or subtract 5 from 2 or 7 .
Repeat using the middle fingers for 3 and 8 , and the ring fingers for 4 and 9 .

" 7 lddl/ © $\mathfrak{C u b t r a c t}$ Fivese" on a \mathcal{N} umber Wheel firom any \mathcal{N} umber

Add or subtract 5 from any number: Follow the arrow

Add or subtract 5 from 0 and 5: Follow the arrow

$$
\begin{aligned}
& { }^{66} \text { Alldd/ ©ultract Fifive }{ }^{9 "} \\
& \text { on a Number Wheel } \\
& \text { fipom I and 㒸: }
\end{aligned}
$$

Add or subtract 1 and 6: Follow the arrow for last digit

$$
\begin{aligned}
& { }^{66} \text { Alddl/ ©ulotract Fifive }{ }^{9 "} \\
& \text { on a } \mathcal{N} \text { umber Wheel } \\
& \text { firom, Q and I }
\end{aligned}
$$

Add or subtract 2 and 7: Follow the arrow for last digit

$$
\begin{aligned}
& \text { "Alddleubtract Fivee }{ }^{\circ} \text { on a Number Wheel }
\end{aligned}
$$ from \mathscr{B}^{8} and ${ }_{\sigma}$

Add or subtract 3 and 8: Follow the arrow for last digit

Add or subtract 4 and 9: Follow the arrow for last digit

Tic
 Tac
 Toe
 Math

THREES

Start with Tic-Tac-Toe lines.

Add the 123456789 pattern starting from lower left going up. These are ones-digits.

3	6	9
2	5	8
1	4	7

In the second row, add 1 's in the Tensdigit place and 2's in the third row. You are creating the Threes $(3 \times 1-3 \times 9)$.

$\underline{0} 3$	$\underline{06}$	$\underline{0} 9$
$\underline{12}$	$\underline{1} 5$	$\underline{1} 8$
$\underline{2} 1$	$\underline{2} 4$	$\underline{2} 7$

$3 \times 10=30 \quad$ Notice that this is the first box (3) with a 0 after it. The second will end in 60 (6) with a 0 after it. The 3 rd set will end in 90 , the $3^{\text {rd }}$ number (9) with a 0 after it. The $4^{\text {th }}$ will end in 120 .

Repeat Tic-Tac-Toe lines and123456789 pattern. Add 3's, 4's, and 5's in the next three rows, creating $3 \times 11-3 \times 19$.

$\underline{3} 3$	$\underline{3} 6$	$\underline{39}$
$\underline{42}$	$\underline{4} 5$	$\underline{48}$
$\underline{5} 1$	$\underline{5} 4$	$\underline{5} 7$

$$
3 \times 20=\overline{6} 0
$$

Do lines and and123456789 pattern.

3	6	9
2	5	8
1	4	7

Copyright2008 Tom Biesanz

Continue creating the Threes as long as you like in this fun way. The next rows ${ }^{81}$ will add 6,7 , and 8 in front of the 1-9 and the next table will add 9,10 , and 11 in front.

Buy EZ Times Table book on my website http://eztimestable.com for \$9.95. It includes ways to do the Twos, Threes, Fours, Sixes, Eights, and Nines as well as a 1-page creation of the whole times table.

12 DIAL PADS TO PLAY ON FOR ALL NUMBERS ${ }^{83}$

PatternPlayMath.com

\section*{| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

 | 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |}

©MisterNumbers2014

THREES

SEVENS

NINES

Threes: Rotate Phone left

EZ Times

Table

Worksheets

MathMatters

\section*{Curriculum Review Magazine (established 1960)} September 08 Issue (published by Federal News Services, a division of PaperClip Communications, Inc.) | To find out more |
| :--- |
| about the book, |
| check out the |
| blank copy of the Subscriberis Spot |
| "Creating the |
| Threes and Seven from |
| Patterns: Wow!" handout from |
| EZ Times Table on the |
| Curriculum Review website at: |
| www.curriculumreview.com. |
| Just go to the website, click |
| on "Subscriber Spot" and |
| enter the password | from there. Kids

as young as
kindergarten age
enjoy making the
EZ Times Table
(see
MisterNumbers MisterNumbers Students generate a structure for numbers, based on the Ones and Twos, that makes sense to a child's brain.
This right-brain approach presents instructions, additional information for parents/teachers, and a full 8.5 " x 11 " table for each step, detailing the result with playful graphics on the side. Employing the EZ Times Table, the book then shows how to use it to teach addition, subtraction, multiplication, division, factors, squares, place value, prime numbers, and more.

> | The words "math" and "fun" don't often make the |
| :--- |
| same sentence. But, in this case, a new book does |
| make math fun! EZ Times Table by Thomas Biesanz |
| (available September 2008, Growth-ink Publishing, |
| ISBN\# 978-0-9799636-1-2). This new book is a rev- |
| olutionary visual and auditory introduction to |
| math-a welcome resource in a time when U.S. |
| math scores are falling behind other countries. |
| While traditional math instruction relies mainly on | work, EZ Times Table helps

children with multiplication. All they need to know is how to count to 10 and that $2,4,6,8$, and 0 are the even numbers, and they can create a whole times table Find Out More About EZ Times Table
EZ Times Table uses pattern play to teach
multiplication. The Tic-Tac-Toe square helps
students create multiplication tables all the
way up to 20x20. Free instructional videos
are available on Youtube by are available on Youtube by MisterNumbers at:
http://youtube.com/user/ MisterNumbers. A DVD is also available at: http://eztimestable.com/. You'll quickly see how passionate author Thomas Biesanz (aka MisterNumbers) is about math!

Right Brain Math
 A fun, visual approach to learning multiplication and division where kids play with patterns and make friends with numbers

by
Thomas Biesanz
a.k.a. MisterNumbers

January 2011
Growth-Ink Publishing 4025 State Street \#9
Santa Barbara, CA 93110
Library of Congress Catalog
Control Number: 2008905174
ISBN 978-0-9799636-1-2
copyright 2011 Thomas Biesanz
Art work by Jakob Marsh
http://EZTimesTable.com
EZ Times Table is patent pending.
Limited reproduction permission: The publisher grants permission to individual classroom teachers who have purchased this book to reproduce one transparency of individual tables and up to 100/year Tables as needed for use with their students.

No other part of this publication may be reproduced or shared without written permission of the publisher. School licensing is available, contact Tom@eztimestable.com.

All Instructions on one page

1. Put a big 1 above the left gray column. Going down the right side of the column, write the numbers $1,2,3,4,5,6,78,9,0$, and repeat until you reach the bottom of the column.
2. Put a 1 in front of the first 0 , a two in front of the second $0 \ldots$... Put 1 's between the 1 and 2 on the left side, 2's between the 2 and 3 , and 3 in front of the last 1 and 2 . You have created the numbers $1-32$. write the numbers $2,4,6,8,0$, and repeat until you reach the bottom of the column.
3. Put a 1 in front of the first 0 , a two in front of the second $0 \ldots$... Put 1 's between the 1 and 2 on the left side, 2's between the 2 and $3 \ldots$, and 6 in front of the last 2 and 4. You have created the numbers 2-64.
4. Put a big 3 above the column to the left of the Ones. Put a 3 in the same row as the 3 in the Ones column. Above the 3 you just put in the Threes column, there are two empty boxes. Place a dot in these boxes. Look at the pattern you have just created. (dot, dot, 3). Continue all the way down this column with this pattern of $\bullet \bullet 3$, 3, • • 3...
5. Put a big 4 in the column to the right of the Twos. Put a 4 in the same row as the 4 in the Twos column. Above the 4 you just put in the Fours column, there is one empty box. Put a dot in that box. Notice that you have a pattern of a dot and then a 4. Continue this pattern all the way down the column: • 4, • 4, • 4, • 4, • 4, • 4...
6. Put a big 6 above the column to the right of the Fours. In this column, put a 6 in the same row as the 6 in the Twos column. Above the 6 you just put in the Sixes column, there are two empty boxes. Put a dot in those boxes. Now in the Sixes column, you have two dots and a 6 . This is your pattern. Continue it all the way down the column: $\bullet 6, \bullet \bullet 6, \bullet \bullet 6, \bullet \bullet 6, \bullet \bullet 6 \ldots$
7. Put a big 8 above the column to the right of the Sixes. Put an 8 in the same row as the 8 in the Twos column. Above the 8 you just put in the Eights column, there are three empty boxes. Put a dot in those boxes. Now in this Eights column, you have three dots and then an 8. Look at this new pattern. Continue it down to the bottom of the column: $\bullet \bullet 8$, • • 8 , • • 8 , • • - 8...
8. Put a big 10 in the column to the right of the Eights. Here we will use a shortcut. On the left side, put the numbers 1-10. On the right side, put a 0 in each of the ten boxes. You have created the numbers 10-100.
9. Put a big 5 above the column to the left of the Threes. In the column to the left of the Threes, count down by 5 's to $50(5,10,15,20,25,30,35,40,45,50)$.
10. Put a big 9 above the far left column. The Nines column has 10 rows divided by a dotted line. Write down the left side of the dotted line the numbers $0-9$. In the same row as the 9 at the bottom, write a 0 on the right side of the dotted line. Write 0-9 going UP.
11. Put a big 7 above the column to the left of the Fives. In the seventh box down, write the number 49.
12. In the box in the bottom left corner of the EZ TIMES TABLE write " $\mathbf{O} \boldsymbol{X}$ any number = 0 " or "Zero times any number equals zero."
13. To eliminate counting the numbers using dot patterns, place a little $x 1$ in the corner of the first 3 , a little $x 2$ in the corner of the second 3 , a little $x 3$ in the corner of the third 3.... Repeat for the Fours, Sixes and Eights.

The Ones-A Tahle ©Thumes Bieserz 2007 meredimetable.com

Odd Numbers		1	2	Even Numbers		
	3					
	.	1	\%			
	-	2	\%			
	3×1	3	6			
	-	4	\%			
	-	5	1:0			
	32	6	1:2			
	-	7	$1: 4$			
	-	8	1:6			
	3 a	9	1:8			
	\cdot	1:0	2:0			
	-	1:1	2			
	3 l	$1: 2$	2:4			
	\bullet	1:3	2:6			
		1:4	2:8			
	35	1:5	3:0			
	-	$1: 6$	3:2			
	-	17	3:4			
	3×5	1:8	3:6			
	\cdots	$1: 9$	3:8			
$0)$	-	20	4:0			
	3 zr	2:1	4迆			
(1)	-	2:2	4:4			
	\cdots	2:3	4:6			
-	3 .	2:4	4:8			
	\cdots	2:5	5:0			
	\cdots	2:6	5:2			
	3×0	2:7	5:4			
	-	2:8	$5{ }^{5} 6$			
	-	2:9	5:8			
	3 IIf	3:0	6:0			
	\cdots	3:1	6:2			
	-	3!2	6:4			

EZ TIMES TABLE

2	Even Numbers			
	4	6		
2	-	-		
!	4×1	-		
6	-	6×1		
8	4:	-		
1:0	-	\bullet		
1:2	$4=$	$6: 2$		
$1: 4$	-	-		
$1 \vdots 6$	4*	-		
1:8	-	68		
2:0	4×	-		

Odd Numbers		1	2	Even Numbers			
	3			4	6	8	
	-	1	2	-	-	-	
	-	2	! 4	4 ¹	-	-	
	3×1	3	6	-	6×1	-	
	-	4	\%	4:	-	8 n1	
	-	5	1:0	-	-	-	
	32	6	1i2	$4=$	$6=2$	-	
	-	7	14	-	-	-	
	-	8	$1!6$	4*	-	$8=$	
	3 z	9	1:8	-	$6=$	-	
	-	1:0	2:0	4	-	-	
	-	11	2:2	-	-	-	
	3 x	1:2	2:4	4 x	6 x	8 B	
	-	1:3	2:6	-	-	-	
	-	1:4	2:8	4×	-	-	
	3-5	1:5	3:0	-	6	-	
	-	1:6	3:2	4 \quad In	-	8 m	
	\bullet	1:7	3:4	-	-	-	
	3 z6	1:8	3:6	4 xa	6	-	
	\bullet	1:9	3:8	-	-	-	
	-	2:0	4:0	4×19	-	8=	
	387	2:1	4:2	-	$6=$	-	
	-	2:2	4! 4	4	-	-	
	-	2:3	4:6	-	-	-	
	3 28	2:4	4:8	4	6 za	8 ㅎ	
	\bullet	2:5	5:0	-	-	-	
	-	2:6	5:2	4	-	-	
	3 $\times 9$	2:7	5:4	.	6 xa	-	
	-	2:8	5:6	4		$8{ }^{27}$	
	-	2:9	5:8	-	-	-	
	3 If	3:0	6:0	4	6×10	-	
	-	3:1	6\%2	-	\bullet	-	
	\bullet	3:2	6! 4	4	-	8 ab	

Odd Numbers		1	2	Even Numbers			
	3			4	6	8	10
	-	1	!2	-	-	-	1:0
	-	2	! 4	4×1	-	.	2:0
	3×1	3	6	-	6×1	-	30
	-	4	8	42	-	8 n	40
	-	5	1:0	-	-	-	50
	$3=$	6	$1{ }^{1}$	$4=$	$6=$	-	60
	-	7	114	-	-	-	70
	-	8	116		-	$8=$	8:0
	3 z	9	1!8	-	$6=$	-	9:0
	-	1:0	2:0	4.	-	-	10:0
	-	11	2 2	-	-	-	
	3 n	1:2	2:4	$4 \times$	6	8.3	
	-	1:3	2:6	-	-	-	
	-	1:4	2:8	48	-	-	
	3-5	1:5	3:0	-	6	-	
	-	1:6	3:2	4 nt	-	8 x	
	-	1:7	3:4	-	-	-	
	3 x6	1:8	3:6	4×1	6 -	.	
		1:9	3:8	-	-	-	
	-	20	4:0	4 810	\bullet	8-	
	$3 \mathrm{z7}$	2:1	4迆	-	$6 \square$	-	
	-	2:2	4:4	4	-	-	
	-	2:3	4:6	.	-	-	
	328	2:4	4:8	4	6	8 п	
	\bullet	2:5	5:0	-	-	-	
	-	2:6	5:2	4	\bullet	.	
	3 $\times 9$	2:7	5:4	-	$6 \times$		
		2:8	5:6	4	-	$8 \mathrm{x7}$	
	\bullet	2:9	5:8	-	\bullet	-	
	3 710	3:0	6:0	4	6810	.	
	,	3:1	6:2		\bullet	\cdot	
	-	32	6 \% 4	4	\bullet	8 -	

Odd Numbers			1	2	Even Numbers			
9	5	3			4	6	8	10
0	5	-	1	!2	.	-	-	1:0
1	10	-	2	! 4	4×1	-	-	20
2	15	3×1	3	\%	-	6×1	-	3:0
3	20	-	4	8	42	-	8 -1	40
4	25	-	5	1:0	-	-	-	50
5	30	$3=$	6	1迆	$4=$	$6=2$	-	60
6	35	-	7	14	-	-	-	70
7	40	-	8	$1!6$	4	-	$8=$	8:0
8	45	3 z	9	1:8	-	$6=$.	9:0
9	50	\bullet	1:0	2:0	4×	-	-	10:0
		\bullet	11	2:2	-	\bullet	-	
		3 x	12	2:4	$4 \times$	6 xt	8 z	
			1:3	2:6	-	-	-	
		-	1:4	2:8	$4 \times$	-	-	
		3-5	1:5	3:0	.	6		
		-	$1: 6$	3!2	4 n	-	8 m	
		\bullet	1:7	3:4	-	-	-	
		3 xi	1:8	3:6	4 x	6 푸	-	
		\bullet	1:9	3:8	-	-	-	
		-	2:0	4:0	4×10	-	8	
		387	2:1	4:2	-	$6 \square$	-	
		-	2:2	4:4	4	-	-	
		-	23	4:6	.	-	-	
		3 88	2:4	4:8	4	6 \%a	8 ¢	
		-	2:5	5:0	-	-	-	
		-	2:6	5:2	4	-	-	
		3 29	2:7	5:4	.	6×9	-	
		-	2:8	5:6	4		$8 \mathrm{z7}$	
		-	2:9	5:8	-	-	-	
		3 Itr	3:0	6:0	4	680	.	
		-	3:1	6:2		-	-	
		\bullet	3:2	6:4	4	\bullet	8 ¢	

Odd Numbers					2	Even Numbers			
9	7	5	3			4	6	8	10
09	7	5	-	1	!2	-	-	-	1:0
18	14	10	-	2	! 4	$4 \times$	\bullet	-	2:0
27	21	15	3×1	3	6	-	6×1	-	$3: 0$
36	28	20	-	4	8	4=	-	8 ± 1	40
45	35	25	-	5	1:0	-	-	-	$5: 0$
5.4	42	30	32	6	1:2	$4=$	$6 \pm$	-	6:0
63	49	35	-	7	$1!4$	-	-	-	7:0
72	56	40	-	8	$1!6$	4	-	8=	8:0
$8: 1$	63	45	3 z	9	1:8	-	$6 \times$	-	$9: 0$
90	70	50	-	1:0	2:0	4]	-	-	10:0
			-	11	2:2	-	-	-	
			3 xa	1:2	2:4	4 \times	$\mathrm{Eza}_{\text {z }}$	83	
			-	1:3	2:6		-		
			\bullet	1:4	2:8	48	-	-	
			3-5	1:5	3:0	-	6 ${ }^{\text {a }}$	-	
				1:6	3!2	4 7n		8 m	
			-	1:7	3:4	-	-	\bullet	
			38	1:8	3:6	4 x	6 -if	-	
			\bullet	19	3:8	-	-	-	
			-	20	4:0	4×10	-	8=	
			$3 \mathrm{x7}$	2:1	4迆	-	$6 \square$	-	
			-	2:2	4:4	4		-	
			-	2:3	4:6	-	\bullet	-	
			3 28	2:4	4:8	4	6 -7	8 5	
			-	2:5	5:0		-		
			-	2:6	5:2	4	-	-	
			3>9	2:7	5:4	.	$6 \times$	\square	
			-	2:8	5:6	4	-	$8 \mathbf{8 7}$	
			-	2:9	5:8	.	-	-	
			3 IIf	3:0	6:0	4	6xa	-	
			-	3:1	6:2		-	-	
			\bullet	3:2	6:4	4	\bullet	8 ¢	

Odd Numbers				1	2	Even Numbers			
9	7	5	3			4	6	8	10
0:9	7	5	-	1	2	-	-	-	10
18	14	10	-	2	4	4×1	-	-	20
2:7	21	15	3×1	3	6	-	6×1	-	30
$3: 6$	28	20	-	4	8	$4=$	-	8 п	40
4:5	35	25	-	5	1:0	-	-	-	50
$5: 4$	42	30	$3=$	6	12	48	$6=$	-	60
6	49	35	-	7	$1: 4$	-	-	-	70
7!2	56	40	-	8	16	4 z	-	812	80
8:1	63	45	323	9	1:8	-	$6=$	-	90
9:0	70	50	-	1:0	2:0	4 -	.	-	100
			-	11	2:2	-	-	-	
			3 4	1:2	2:4	4 x	6 \times	$8 \times$	
			-	1:3	2:6		,	-	
			-	1:4	2:8	487	.	-	
			$3 \times$	1:5	3:0	-	6 -	-	
			,	1:6	3:2	4 \%		8	
			-	1:7	3:4	-	-	-	
			3	1:8	3:6	4 영	6 즌	-	
			-	$1: 9$	3:8	-	-	-	
			-	20	4:0	4×10	-	85	
			31	2:1	4:2	-	68	-	
			-	2:2	4:4	4	-	-	
			\cdot	2:3	4:6	-	-	\bullet	
			3	2:4	4:8	4	6 게	8 -	
			-	2:5	5:0	-	-	\bullet	
			-	2:6	5:2	4	-	-	
			3 $\quad 9$	2:7	5:4	.	6 \%	\bigcirc	
				2:8	5:6	4	-	87	
			-	2:9	5:8	.	-	-	
			3:11	3:0	6:0	4	6^{110}	-	
			-	3:1	6:2		-	-	
			-	3:2	6:4	4	-	8 -	
Zero X ITly mimher $=$ zerip									

EASY TIMES

by Janet Jacobsen

If numbers make you feel numb and dumb, here is a way to make them fun. Just take a look at the open chart and see the big "T", that's your start.

Now number down both sides of the "T".
On the left side write down 1, 2,3 , 4, 5, 6, 7, 8, 9, oh, repeating again on down the row.

On the right side 2, 4, 6, 8, oh, And repeat again on down you go.
Add one's and two's making teens and twenties.
It's as easy as counting copper pennies.
Odd numbers go across the left top "T" line.
Write 1, 3, 5, 7, and then 9.
Even numbers go across the right side again,
2, 4, 6, 8 and then 10.
Now you have a big numbered "T".
Once you add dots you'll have the key
to finding patterns that are fun and easy to see and will help you learn the times table effortlessly.

reality (half of a box). Division
If a number (the dividend) is divided by a number in a short column, the answer is in the Ones column in the same row as the dividend. Let's divide 63 by 9 . we would look in the Nines column for the "answer" since we are dividing by 9 . We find 63 or the nearest lower number. It is in the seventh box in the nines column, so the answer is $63 \div 9=7$. It is also in the same row as the 7 in the Ones column. Students now understand that multiplication and division are opposites and that they can work either way with the Chart.

SQUARES

Finding the first One, the second Two, the third Three, the fourth Four, the fifth Five... adds a dimension to squares that creates interest and promotes understanding of what a square number is. Ones, Twos, Threes, etc. are capitalized because they are families where the individual numbers in each set are at home. The Fives include 5, 10, 15, 20, and 25, which is the fifth and square number of the Five family.

FRACTIONS

Fractions are another way of seeing division with some multiplication thrown in. Start with $1 / 4$ of 12 . Since 12 is an even number, find 12 in the Twos column. One fourth means that you are dividing by 4. Looking in the Fours column next to the 12 in the Ones column, you see that the third 4 is there. You can also divide the Ones column down to twelve in four equal parts (three numbers each). This adds another visual, right-brain dimension. $1 / 4 \times 12=3$. I like using $1 / 4$ because it is also called a quarter. For $2 / 4$ (two quarters) of 12 , I hold up a real quarter and ask, "If one quarter ($1 / 4$) is worth 3, then two quarters are worth \qquad ?" I hold up two quarters and the students see that two quarters (each worth 3) are worth 6. "And three quarters are worth ____?" They see that three quarters (each worth 3) are worth 9. Once the principle is established, fractions are easy work.

FACTORS

Factors can easily be found for any number by finding the number on the EZTT. Looking to see what column they are in tells the student one factor of the number. Another can be found by looking in the Ones and Twos column in the same row. 24 , next to 6×4 shows that 6 and 4 are factors of that number.

PLACE VALUE

Students have used Ones-digits and Tens-digits in patterns when they created the Ones, Twos, Nines and Tens. See Ones-units on page 54. Kids are just learning names for what they already are using.

PRIME NUMBERS

The Times Line Table (page 65) is a great overview to explore prime numbers. These are numbers that can only be divided by 1 and themselves. Accepting that 2, 3, 5, and 7 fit this definition, they are circled (they show up as factors of themselves). Go down the Ones column and see that 11 has only dots (no factor numbers) in that row. 13, 17, 19, 23, 29, 31, 37, 41, 43, \& 47 also have only dots in their row. These numbers are also circled. Because they have no factors, they are prime numbers. The Table could be continued to 100 or more as a project to learn about factors and prime numbers using this rightbrain overview. Could we find all prime numbers by continuing this chart?

USING THE EZ TIMES TABLE WITH OTHER LEARNING METHODS

The EZ TIMES TABLE appeals to several learning strategies. It can stand alone as a method of teaching math, but it also is reinforced by combining it with other methods.

Using it with flash cards can become a game to find the answers in two different ways for each card. This increases confidence and locks in the actual multiplication facts as students learn their way around the Table.

The EZTT works well with manipulatives too. As you move each pair of blocks (or other manipulatives), go down one box in the Twos column with a finger or pencil. The Twos column will keep count of the total number of blocks and Ones column will keep track of the number of pairs.

Now double up the pairs and move the groups of four blocks down as groups. In the Fours column, point to the first 4 with this group, and then the second 4 with the second group of 4 blocks. Moving over to the Twos column shows that you have 8 blocks and the Ones column shows that this is your second group of 4 blocks. Moving the tenth group of four is done as you point to the tenth 4. This shows the student that he has moved 40 blocks (in the Twos column) and that this is his tenth group of four blocks (by counting the 4's or looking at the small $\times 10$ after that 4).

The same method works for the Threes, Sixes, and Eights. For the Fives, Sevens, Nines, and Tens, go down one box with each corresponding set of blocks moved.

The EZ Times Table also works well with counting rectangles on graph paper. On graph paper you can give added meanings to each of the families of Ones, Twos, Threes, Fours, etc. with rectangles one wide, two wide, three wide, etc. and then going to the EZTT to get totals for each row of squares.

WORKSHEET

The next two pages are a two sided worksheet that can be used to focus on using the Table while, or after creating the Table. It can also be used in a class for fast students who are waiting for their peers to finish a column.

[^2]
PLAYING WITH THE EZ TIMES TABLE

Any multiplication workbook or page of problems can be used with the Chart. The following page starts with one digit multiplication. Copy this for your class or use your own. The students have created the times table and they are amazed that all the answers to one-digit multiplication are in this simple Table. It is very important to use the EZTT with many problems until they understand that all multiplication facts are here and they start thinking in the families of the Threes, Sixes, Eights, etc.

There is even a pattern way to learn a 20×20 times table in the back of the book. Students will have to learn a traditional or lattice technique to multiply 2 digit or larger numbers. They are learning to use it quickly and to double-check their answers by reversing the problems (6×8 gives the same result as 8×6). Finding the same answer in two different ways on a chart that they made is very satisfying for many students.

There is a huge amount of information on this Table and it is useful for students to look at similarities, patterns, and go back and forth between addition and multiplication with the Table. They can visually see where the same numbers have more than one factor (24 has half of the numbers $1-10$ as factors: $1,3,4,6$, and 8).

For $6 \times 5=30$, the student can count down 6 Fives, or go down the Ones column to 6 and then over to the Fives column. They have found the answer 30 in two ways. This also reinforces that multiplication is just adding the same number over and over again.

Numbers start making more sense to the student. Four 4's and two 8's both add up to 16. They can SEE number relationships. They trust the TREES of the Ones and Twos column to know that their answers are correct. They can visually see the answers. These TREES of the Ones and Twos can help them learn the multiplication tables by heart because it is not blind memory. The numbers make sense and relate to each other. Studying the numbers with the Table that they created helps them own the numbers.

The following worksheet gives students an opportunity to expand the use of the EZ Times Table.

$2 \times 3=$	34
$6 \times 2=$	$\times 2$
$3 \times 4=$	
$4 \times 5=$	
$5 \times 6=$	$\begin{array}{r} 23 \\ \times 3 \\ \hline \end{array}$
$6 \times 7=$	
$7 \times 8=$	5
$8 \times 9=$	$\times 4$
$9 \times 9=$	
$9 \times 7=$	68
$8 \times 6=$	+ 5
$7 \times 5=$	
$6 \times 4=$	
	44
$5 \times 3=$	+62
$8 \times 4=$	
$7 \times 3=$	73
$6 \times 9=$	- 96
26 / 2 =	
24 / $6=$	
$32 / 8=$	$\begin{array}{r} 853 \\ \times 421 \\ \hline \end{array}$
35 / 5 =	
$63 / 9=$	
18 / $4=$	
21 / 3 =	
49 / 7 =	

Half of 26 is \qquad
Half of 50 is \qquad
Half of $\$ 88$ is \qquad
Double 4 is \qquad
Double 7 is \qquad
Double 8 is \qquad
Double 16 is \qquad
Double 25 cents \qquad
$1 / 2$ of 26 is \qquad
$1 / 2$ of $\$ 38$ is \qquad
$1 / 2$ of $\$ 55$ is \qquad
$1 / 4$ of 20 is \qquad
$3 / 4$ of 20 is \qquad
$1 / 9$ of 36 is \qquad
$2 / 9$ of 36 is \qquad
$3 / 9$ of 36 is \qquad
$1 / 3$ of 27 is \qquad
3 3's are \qquad
4 4's are \qquad
5×5 is \qquad
6 squared is \qquad
7 squared is \qquad
8^{2} is \qquad
9^{2} is \qquad

Using EZ Times Table in a Home or in the Classroom

The EZTT can be used many ways with a single student or a classroom. To introduce it to a group of students, I recommend use of an overhead projector. Make a transparency of the blank EZTT and talk the class through it as you create your own Table on the transparency. Some students often quickly get excited by seeing and creating the patterns. This becomes an incentive for other students to join in the fun. I recommend grouping students who start going ahead ("All students who have finished the Threes already should come over here and do these problems").

Another approach is eliminating the small $\times 1, \times 2, \times 3, \times 4$, etc. for the whole class and then giving it to the faster students to fill in. Leaving it out makes the Table easier and clearer for some students, and it is still fully functional. The students just need to count down the numbers in the pattern to multiply and divide (for example, look at 24, find the 6 in the same row, and count down to find that it is the 4th 6 in the Sixes column).

A third addition for fast students is to have them convert their EZTT to an EZ Facts Table by changing the patterns to the multiplication facts (found in the Ones and Twos columns). The second 6 is erased and replaced with a 12 (which is in the same row in the Twos column). The third 6 is replaced by 18 (in the same row in the Twos column), etc. Have these students replace all patterns with numbers from the same row in the Twos column for the Threes, Fours, Sixes, and Eights columns or give them the EZ Fill-in Facts Table.

Students can use their own EZTT to work on their math problems for addition, subtraction, multiplication and division for their daily work. Students have chosen to laminate their EZTT because it was so valuable to them. They have made their own calculator!

The students could re-create the EZTT once a week. If they use graph paper, they start seeing that they are creating the whole times table "from scratch", which they can do for standarized tests. Even just re-creating the Nines or Sevens in a few seconds on the side of a paper can eliminate errors and build trust.

I highly recommend Teach Your Child the Multiplication Tables: Fast, Fun \& Easy with Dazzling Patterns, Grids \& Tricks! by Eugenia Francis who has created great worksheets that focus on patterns. Please send me ideas and suggestions that I can pass on to other teachers.

Lesson Plan for EZ Times Table

Lesson Plan: EZ Times Table

Combine Goals, Objectives, and Activities that are appropriate for your students. Some of the 3rd, 4th, and 5th grade activities are found in the advanced Part 3.

Time varies: usually . 5 hour for each table (20 tables)

Subject: Math

Goals: (Use these California Standards or from your own state)

$1^{\text {st }}$ Grade California Standards

1.0 Students understand and use numbers up to 100.
2.0 Students demonstrate the meaning of addition and subtraction and use these operations to solve problems.

$\mathbf{2 N D}^{\text {D }}$ Grade California Standards

1.0 Students model, represent, and interpret number relationships to create and solve problems involving addition and subtraction.
3.0 Students model and solve simple problems involving multiplication and division:

$3^{\text {rd }}$ Grade California Standards

2.0 Students calculate and solve problems involving addition, subtraction, multiplication, and division:
2.3 Use the inverse relationship of multiplication and division to compute and check results.
2.6 Understand the special properties of 0 and 1 in multiplication and division.

$4^{\text {th }}$ Grade California Standards

2.0 Students use two-dimensional coordinate grids to represent points and graph lines and simple figures.
3.0 Students solve problems involving addition, subtraction, multiplication, and division of whole numbers and understand the relationships among the operations.
4.0 Students know how to factor small whole numbers.

$5^{\text {th }}$ Grade California Standards

2.0 Students perform calculations and solve problems involving addition, subtraction, and simple multiplication and division of fractions and decimals.
2.0 Students use strategies, skills and concepts in finding solutions.
3.0 Students move beyond a particular problem by generalizing to other situations.

Objectives $1^{\text {st }}$ GRADE: Student will be able to

1.1 ...count, read, and write whole numbers to 100. ... create the Twos from patterns to 64 and beyond.
1.3 ...represent equivalent forms of the same number through the use of physical models, diagrams, and number expressions (to 20) (e.g., 8 may be represented as $4+4,5+3,2+2+2+2,10-$ 2, 11-3).
... half or double any number to 32 and beyond.
... add any three numbers from 1-10 in any order resulting in the same answer.
... subtract a smaller number from any number up to 32 .
$\mathbf{2}^{\text {ND }}$ GRADE: Student will be able to:
...use repeated addition, arrays, counting by multiples to do multiplying
...Use the commutative and associative rules to simplify mental calculations and to check results.
...Recognize and describe patterns \& determine a next term in linear patterns.
Solve problems involving simple number patterns.
3rd GRADE: Student will be able to:
... Recognize and use the commutative and associative properties of multiplication (e.g., if $5 \times 7=35$, then what is 7×5 ?, if $5 \times 7 \times 3=$ 105 , then what is $7 \times 3 \times 5$?).
...Use the inverse relationship of multiplication and division to compute and check results.
... Understand the special properties of 0 and 1 in multiplication and division.
... Select appropriate operational and relational symbols to make an expression true (e.g., $4 \ldots 3=12$, what operation symbol goes in the blank?).
Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.
$4^{\text {th }}$ GRADE: Student will be able to:
... Understand that many whole numbers break down in different ways (e.g., $12=4 \times 3=2 \times 6=2 \times 2 \times 3$).
...Know that numbers such as 2, 3, 5, 7, and 11 do not have any factors except 1 and themselves and that such numbers are called prime numbers.
...Draw the points corresponding to linear relationships on graph paper.
...Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.
$5^{\text {th }}$ GRADE: Student will be able to:
1.4... Determine the prime factors of all numbers through 50.
1.1... Use information taken from a graph or equation to answer questions about a problem situation.
2.3... Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, and models, to explain mathematical reasoning.

Activities

You may go in sequence or choose whatever the student or class is ready to learn.

Kindergarden

p.8: Create the Ones Number line.

First Grade, EZ Times Table

p.11: Do addition problems, adding two or more numbers.
p. 11: Do subtraction problems with EZTT.
p.12: Create the 2's. Count by 2's, Double a number, Multiply by 2.
p. 14 Learn to Divide by 2, to find half of a number.

Second Grade, Ez Times Table

p. 4-40 Create the EZ Times Table.
p. 68: Create the Color EZTT.
p. 37: Add multiples of 1-10 (preparation for multiplication).

Third Grade, EZ Times Table

p. 43: Multiplication with EZTT.
p. 60: Create EZ Facts Table. Use EZ Facts to memorize multiplication table.
p. 45: Find and understand factors on the EZTT.
p. 55: Threes and Sevens patterns. Fun! See MisterNumbers on Youtube.
P. 58: Twos, Fours, Sixes, Eights patterns.
p. 44: Division on the EZTT.
p. 45: Learn Square Numbers on the EZTT.
p. 74: Create a Ruler EZTT
p. 4-40: Create the EZTT on graph paper.

Fourth Grade, EZTT

p. 56: Learn Rule of Tens.
p. 70: Create 10×10 and 10×20 Multiplication Table
p. 64: Create Time Line Table.
P. 64: Find factors on Time Line Table.

Fourth \& Fifth Grade, EZTT

p. 72: Create a 20×20 Multiplication Table.
p. 66: Create the Slope Line Table.
p. 66: Anchor slope lines in Graphing with slope line table.
p. 64: Find Prime Numbers on Times Line Table.
P. 72 : Create a 30×30 Table on graph paper.

Fun Patterns with the Ones-digits and Tens-digits

 Feel free to skip this page. Come back if you want to understand ones-digits.What are Ones-digits? We have already worked with the Ones-digits when we created the Ones, Twos, Nines and Tens columns in the EZTT. They are the numbers to the right of the dotted line, in the Ones place. The Tens-digits are the digits in the tens place, the number to the left of the dotted line in these four columns. See below. We will use the Ones-digits and Tens-digits for more pattern play starting on the next page.

Note that on the last row of the Tens, the tens-digits reach 10 at 100, we could add another dotted line on the left and have 1 in the hundreds-digits.

The ONES-DIGITS are circled below. In the EZTT, we started the Ones and Twos with a pattern in the ones-digits.

The TENS-DIGITS are circled below. In the EZTT, we started the Nines and Tens with patterns in the tens-digits.

1	2	9	10	1	$?$	9	10
4	2	0:9	10	1	2	(0):	1)
1	2	1:8	20	:1	:2	1.	2
2	4	2:7	30	2	4	2	3
3	6	3 6	410	3	6	3 :	4
4	8	45	510	4	88	4	5
5	0	$5 \cdot 4$	610	5	1:0	5	6
7	4	63	70	7	1:4	$6:$	7
8	6	7:2	810	8	1:6	7.	B
9	8	8:1	90	9	$1: 8$	8	9
0	0	9:0	1000	1:0	2:0	9:	10
1	2	The Ones-digits are on the right side of the dotted line in these four columns from the EZTT. We ended making the Nines with a 0-9 pattern going up and the Tens with zeros. See pages $8,12,26$, and 32 for making the ones-digits in these columns.		1:1	2:2	The Tens-digits are on the left side of the dotted line in these four columns from the EZTT. See pages 12, 14, 26 and 30 for making the tens-digits in these columns.	
2	4			1:2	2:4		
3	6			1:3	2: 6		
4	8			1:4	2:8		
5	0			1:5	3:0		
6	2			1:6	$3: 2$		
7	4			1:7	3:4		
8	6			1:8	3:6		
9	8			$1: 9$	3:8		
0	0			2:0	4:0		
1	2			2:1	4:2		
2	4			2:2	4:4		
3	6			2:3	4:6		
4	8			2:4	$4: 8$		
5	0			2:5	5:0		
6	2			26	5:2		
7	4			2:7	5:4		
8	6			2:8	5:6		
9	8			29	5:8		
0	0			30	6:0		
1	2			3:1	62		
2	4			3:2	6:4		

Creating the Threes and Sevens from Patterns: WOW!

The Threes

Make a Tic-TacToe Square.

Ad the 1-23-4-56-7-8-9-0 pritten stating from lower left going up. These ge ouss diju.

Add l's in the Tensdigit plave in the saccond 10w, and 2 's in the third rivis. You gie creating the Thees (3xl-3x9).

03	06	09
12	15	18
21	24	27
$3 \times 10=30$		

Reqeat Tic-Twe-Tbe squre \& 123456789 Frittell Add 3's, 4's, and $S^{\prime} s$ in ench of the next thee intis, cieating $3 \times 11-3 \times 19$.

Repeat Tie-Tre-Tise squre e 123456789 Pritem. Add 6's, Ts, and 8 's in each of the mett three IUTH, cieating 3x21-3×29.

Nutice that earb Tic-m-Toe squme ends with 30, 60, 90, 120, 150...These are thries (3, $5,9,12,15 \ldots$) with 10 aftrit

Contime creating the Theess as long as you like in this fim yry.

Sur Mintinumbersm Youmbefin I viden

The Sevens

Male aTic-TacToe Square.

Add the 1-23-4-56-7-8-9-0 prittem thating firm upper right nad going down This is the tame, buit CPposite pathern as 3^{2} s.

As yougo acrosst, add 1 tot the trat-digit in $2{ }^{2}{ }^{2} 3^{\text {nin }}$ colmmes (X's). You are
creting the Serent (7x1-7.9)

	X	X
07	14	21
28	35	42
49	56	63
$7 \times 10=70$		

Add 70 as the $10^{\text {it }} 7$. Repeat Tic-Tac-Tbe squre \& 123456789 Pritten. Cindime to add 1 to the tens-digit in $2^{\text {nd }}$ 各 $3^{\text {an }}$ mhemens (X's) as yra pron

	x	x
77	84	91
98	105	112
119	126	133
$7 \times 20=140$		

	X	X
7	4	1
8	5	2
9	6	3
$7 \times 30=210$		

Nutice that earb Tic-m-Toe squile ends
with 30, 140, 210, 280, 350...These Ire sevies (7, 14, 21, 28, 35...) with 10 afler it

Contime creating the Sevens as lomg as you like or stant over in the lest three Squares

Notirem both Tirean Serw sprop that पplaite dizits red up to 10: 7+3,4+6, 1+9, 2 2 $2+1$
 $3 \times 50=150$

3	6	9
2	5	8
1	4	7

3	6	9
2	5	8
1	4	7

Repeat Tic-Txe-Tbe lines andl23456789 pritem.

"RULE OF TENS" PATTERNS

My Rule of Tens states that all columns adding up to ten have reversed patterns in the ones-digits. Looking just at the ones-digits give us a great place to explore patterns in numbers. You just learned used two of them in the Threes and Sevens page. If wou understand ones-digits, feel free to TURN THE PAGE ROW AND CONTINUE TO HAVE FUN with the Twos, Fours, Sixes, Eights, and creating a 20×20 EZ Table from patterns. When you want to know more about HOW it works, read this page.

We know that the ones-digit (Could Ones-ie be a simpler name?) holds the ones place, the last digit in a whole number. In the Ones, Twos, Nines and Tens columins, we saw that it is the number to the right of the dotted line, and the tens-digit (Tens-ie?) is the digit in the tens place, the number to the left of the dotted line.

All multiplication talbe anes-digits fall into just 6 patterns (sorne are reversed). This gets more interesting when one of the patterrss is made up only of Zerns in the Zero and Tens columns. The Fives end with aitermating 5's and 0's, and suddenly we are down to only four patterns in the ones-digits. All patterns start and end with 0 . We can leave the starting or ending Zers off to see the reverse pattern clearer.

In the EZ Table, we created the ones-digits for both the Ones and Nines and they (1 and 9) add up to ten, so let us look at the Rule of Tencs. We made the oner-digits for the Dnes column with a repeating 0-1-2-3-4-5-6-7-5-9-0. We greated the second half of the Nines with the sarme pattern. We reversed them by starting at the bottom. So reading down the right side of the Nines colurnn is the reverse 0-9-8-7-6-5-4-3-2-1-0. Look at the 10 x 20 EZ Table on page 74 (where we separate all the ones-digits with a dotted line for $\mathbf{2 0}$ rows) for confirmation that the pattern repeats. This is the third patteril.

We created the ones-digits for the Twas with a repeating 0-2-4-6-8-4 on the right side of the dotted line. By my Rule of Ten, the Eights should have the opposite pattern. If we look at the 10×20 EL Table again, we see that, indeed, the Eights pattern is 0-8-6-4-2-0. This is the forrth pattern, which is really a 5-digit pattern when we leave off one of the zeros.

By the Rule of Tens, The Fonrs and sixes columns should have reversed patterns. We can look at the EZ Facts Table (page 57) to confirm that the
ones-digit repeating pattern for the Fours is 4-8-2-6-0 and the Sixes pattern is the opposite, 6-2-8-4-0 (leaving the starting zeros off gives us the 5 repeating numbers). This is the fifth pattern.

Dur sixth and last pattern is in the Threes and, by the rule of Tens, the Serens columns ($3+7=10$). Looking at the EZ facts Table or the $10 x$ 20 EZ Table we can see that the patterrs for the Threes is 3-6-9-2-5-8-1-4-7-0 and the Sevens have the reverse pattern of 7-4-1-9-5-2-6-3-1-0. We have seen in the Threes and Sevens page this easy way to visualize these patterns in sets of Three on a Tic-tac-Toe squrire, with the zero below. Threes add 3 to $3_{r} 2,1$ while the Sevens subtract 3 from $7_{r} 8_{s} 9$.

Threes: 3-6-9, 2-5-8, 1-4.7, 0

3	6	9
2	5	8
1	4	7

0

Sevens: 7-4-1, 8-5-2, 9-6.3, 0

7	4	1
8	5	2
9	6	3

0

The Six patterns and their opposites in the Ones-digits All patterns start and end in Zero, the starting zero has been left off. Calumir Repoating Pattern R Reverse Also shans up in Ianger Table

Fer Zeros	0-0	Tens, Twenties ${ }_{\text {r }}$.-
For Fives	5-0	Fifteens, Twentyfives, .--
Fir Ones Fer Nines	$\begin{array}{\|l\|} \hline 1-2-3-4-5-6-7-8-9-0 \\ 9-8-7-6-5-4-3-2-1-0 \text { (nuerse) } \end{array}$	Elevens, Twenty-oness -. Nineteens, Twenty-nines,
Fer Twos For Eights	$\begin{array}{\|l\|} \hline 2-4-6-8-0 \\ \text { 2-6-4-2-0 } \end{array} \text { (neverse of Twos) }$	Twelves, Twenty-twos, .-. Eighteens, Twenty-eights, ...
Fer Fours For Sixes	$\begin{array}{\|l\|} \hline 4-8-2-6-0 \\ 6-2-8-4-0 \end{array} \text { (neverse of Fonss) }$	Fourteens, Twenty-fours, ..Sixteens, Twenty-sixess, _.
Far Threes For Sevens	$\begin{array}{\|l\|} \hline 3-6-9-2-5-8-1-4-7-0 \\ 7-4-1-8-5-2-9-6-3-0 ~(n e v e r s e) ~ \end{array}$	Thirteens, Twenty-Threes, ... Seventeens, Twenty-severs,

If we look at the 20×20 EZ Table on page 72, we see that the patterns in the ones-digits are the same for 1 and 11,2 and 12,3 and 13,4 and 14,5 and 15 . If we make the Table even wider, we will see that all numbers ending in 1 will repeat the 1-2-3-4-5-6-7-8-9-0 pattern, all numbers ending in 2 will repeat the 2-4-6-8-0 pattern, all numbers ending in 4 will repeat the 4-8-2-6-0 patterns numbers ending in 5 will repeat the 5-0 pattern, and so forth.

You will now use these patterns to create the Twos, Fours, Sixes, and Eights, and you can use these patterns in Part 3 to create several multiplication tables.

Patterns for the Twos, Fours, Sixes and Eights

We will create these time tabler frorn patterss in groups af 5 repering numbers in 5 molumins. The Twos ard Eights, as well as the Fenurs and Sixes, have the crime but apposite sequence in the

 (We are "carrying" a ten when we pass 0). Once we endablich where the X's ares we gan fill in the ters-digis. The left tables show the palterns then adds the tens-digits The right celurna is for ypil

The Twos reperting pattern in the ares-digits is 246ess. Orly if Create the Twas pitteris X is laro than the number to its left (8) and has an X athowe it So at 0 , the tenc-digit ahrays increase by 1. On the left trable we add a 1 in front of the first D. Cantinue rith 1 's in the sercmad rens unibl the D gets a 2 . We are creating the Thens with this patterm Certinne to urtite the Tross an the right troble

2	4	6	8	0
2	4	6	8	0
2	4	6	8	0
Ard the tess ingix				
2	4	6	8	10
12	14	1.6	1.8	20
22	24	26	28	30

Create yoㅌ ome Twios X

2	4	6	8	6
2	4	6	8	0
2	4	6	8	6
2	4	6	8	6
2	4	6	8	6
2	4	6	8	6
2	4	6	8	6

The Eights repecting patiern is the apposite (pulting the य까 bext): 86420. The 6; 4, 2 and tr are decreacing and get an X above their columrs. This mexrs that their tens-digits increase by are. Sid in eath rentr we add 1 under each X to make mulliplication by s. The \mathbf{D} Cahumn maker $8 \mathrm{~A} \times 5, \times 10, \times 15$ _ Multiplying by 8 the EZ way!

The Fours repeating pattern is 4月260. The 2 and 0 are getting smmaler and get an X above their columns. Thes means that their tens-digits increase by one. In the first rew, we and 1 a 2 under the X's to create 4, $\mathrm{B}_{\mathrm{r}} 12,16, \mathrm{~g} 20$. Say aloud the rhythrn of the tens-digits:22334, 44556, -

The Sidees repeatirng patiem is G2848, eppposite of the Fours. The 2. 4, and Dare petting smaller and get an X abrese their calumns. This means that their ters-digits increase by ane. In the first raw, we and 1's under the X's to crete 6×5 $=30$. The next raws end in 60 \& 90. Ln't this fun and amazing? See MifterNumbers on Youtube

Create the Erights Patteris				
8	6	4	2	0
8	6	4	2	0
8	6	4	2	0

Ach the teass-ingits

I				I
8	16	24	32	40
48	56	64	72	80
88	96	104	112	120

Create the Fears Pattern

4	8	2	6	0
4	8	2	6	0
4	8	2	6	0

And the tens-ifjis

	X			X
4	8	12	16	20
24	28	32	36	40
44	48	52	56	60

Create the Sixes Patter

	x			
6	2	8	4	0
6	2	8	4	0
6	2	8	4	0

Add the teass -igits

x		x		
6	12	18	24	30
36	42	48	54	60
66	72	78	84	90

Create yow own Fights

	X			
8	6	4	2	6
8	6	4	2	6
8	6	4	2	6
8	6	4	2	6
8	6	4	2	6
8	6	4	2	6
8	6	4	2	6
8	6	4	2	6

Create yoar onis 4's

4	8	2	6	6
4	8	2	6	6
4	8	2	6	6
4	8	2	6	6
4	8	2	6	6
4	8	2	6	6
4	8	2	6	6
4	8	2	6	6

Create yonr onis 6's

6	\mathbf{x}			
6	2	8	4	0
6	2	8	4	0
6	2	8	4	0
6	2	8	4	0
6	2	8	4	6
6	2	8	4	6
6	2	8	4	0
6	2	8	4	6

PART 3:

ADVANCED EZ TABLES

The first advanced table is the EZ Facts Table, which is helpful to almost all students.

We have created most of the times table in two ways. First we created the EZ Times Table and then we created the Threes, Sevens, Twos, Fours, Sixes and Eights from patterns. Now we can create a 20×20 times table purely from patterns. Those who play here often feel that numbers are fun and friendly.

EZ TIMESTABLE

Odd Numbers				1	2	Even Numbers			
9	7	5	3			4	6	8	10
0:9	7	5	-	1	2	-	-	-	10
1:8	14	10	-	2	4	481	-	-	20
2:7	21	15	3×1	3	6	-	6×1	-	30
3:6	28	20	-	4	8	$8=$	-	8×1	40
4:5	35	25	-	5	1:0	.	-	.	50
5.4	42	30	$6=$	6	1:2	12 z	12 n	-	60
63	49	35	-	7	$1: 4$	-	-	-	70
7:2	56	40	\cdot	8	1:6	16 z	-	$16=$	8 \%
8:1	63	45	98	9	1:8	-	18x	-	90
9:0	70	50	-	1:0	2:0	20.5	-	-	100

Pitite arn the mumbers thet roaleg cp that f^{-}-a
 farnixan [ifon the Tares,
 enth Dibar. It in ec. .ier ho
 charit
 thel your milipy to pelt an

 columitisin. The other is
 Exampla $\times 4$) in the long col man line ellor colmas, the rimeran in ing Bmer ruw of the Onerg colm arn factoril. For exampla, 95 百 in the Fives collon anfionfactar.
Sa in atooin tha game ruve as the 7 in the Gras momn

[^3]

EZ FILL-IN FACTS Table

Students who have created an EZ Times Table can form the Facts Table on the previous page. One way is to erase the 3's in the Threes column, replacing them with numbers from the Ones column. They can create the Fours, Sixes, and Eights in the same manner by erasing and filling in the numbers from the Twos column.

The table on the right is an exercise for students who understand the EZ Times Table to quickly create the FACTS Table on the previous page. Creating the Fill-In Facts chart allows them to keep their original EZTT that they value and create the Facts Table too. The need for erasing on the EZTT is eliminated. Fun and neat.

They now have the sets of the Ones, Twos, Threes, Fours, Fives, Sixes, Seven, Eights, Nines, and Tens. Each is still in the structure of the EZ Times Table and the relationship to the Ones and Twos are still evident. Now they can easily memorize the facts from a chart that they made. Creating this chart makes it easier to move up or down one or two boxes to figure out any facts they are unsure of. They have the structure of each set of numbers.

They have accepted the Ones and Twos as accurate and the dot patterns are already in place in the Threes, Fours, Sixes, and Eights columns. Even the little " $x 1, \times 2, \ldots$ " are in place in the openings in the dot pattern on the table on the right.

The student creates the Threes by going down to each open box in the pattern, seeing the number in the same row of the Ones, and putting in that number in the Ones column. So the first open box (cell) in the Threes column (. . _) is a 3. At the next open box, the student puts a 6 since it is in the same row of the Ones. The third box is a 9, and down they go to 30. They have now created the set of the Threes.

They also create the Fours ($4,8,12,16, \ldots$), Sixes ($6,12,18,24, \ldots$) and Eights ($8,16,24,32 \ldots$) in a similar manner by pulling numbers from the Twos column. They have created the sets of the Fours, Sixes and Eights. This allows them to see each of these sets separate, but connected to the Ones and Twos.

They again re-create the Tens, Fives, Nines, and Tens similar to the EZ Times Table. Notice that one factor for each number found on the Table is the column that contains it. The other factor is the little number next to the x, or it is the number in the Ones column. For example, we find 18 in the Sixes Column and it has a $\times 3$ behind it which means that 6 and 3 are factors. 15 is in the Fives column in the same row as 3 in the Ones column and so 5 and 3 are factors.
Zexo Xgimy mimher $=$ zent

VARIATIONS OF THE EZ TIMES TABLES

The EZ Times Table (EZTT) that the student has already created contains the whole multiplication table. They are hooked. There is nothing weird or scary about it. They count by Ones and Twos, count up to three, and do their Fives. Everything else falls into place in a way that they totally understand. Viewing the Table in different forms can facilitate fun understanding and learning math the easy way. A Color EZ Times Table can be created using different colors for each number.

THE TIMES LINE TABLE

The Times Line Table on the right uses the dots pattern from the EZTT. The Ones and Twos columns increase to 50 rows and are still the anchors of the table. The main difference is that $5,7,9$, and 10 are also done as dot patterns. A student sees that Fives can also be dot, dot, dot, dot, 5, and similar patterns can be created for the Sevens, Nines and Tens. The numbers arrange themselves in angle line patterns. The lines of these patterns are drawn on this table and we can see that the first lines are all multiplication-times-one problems for the even and the odd numbers.

The first 9 is in the same row in the Nines column as it is in the Ones column, and the 3,5 , and 7 that are in the same line are also repeated in the Ones column. In the $2 X$ line on the even side, the second 10 is in the same row as the 20 in the Twos column ($10 \times 2=20$). Look at the $4 \times$ (multipli-cation-by-4) line on the left and find the 7 . Looking in the same row in the Ones column, we find the answer, 28. Similar results are found for every number on a line. Students can accurately guess that all whole numbers are on lines if the chart is long enough.

Prime numbers show up on this chart (see page 44). Numbers outside the Ones and Twos column indicate factors in the same row. The numbers without factors (only dots) in their rows are circled and are prime numbers. We could continue the chart and have students find more prime numbers.

This table can be created by students on graph paper for a "Wow" learning experience. Use large square graph paper and use ten squares width, or for more rows, use small square graph paper and use two square width for each column.

VARIATIONS ON THE FOLLOWING PAGES

This is followed in the next pages by the Slope Lines Table which is very similar with an amazing twist for graph charts, Patterns create an EZ 20 x 20 Table and an EZ Ruler Table making the times table on a blank sheet.

MORE VARIATIONS ON THE NEXT PAGES

The Times Line Table is followed in the next pages by the Slope Lines Table which is very similar with an amazing twist for graph charts, Patterns creating an EZ 20×20 Table, and an EZ Ruler Table that creates the times table on a blank sheet.

THE SLOPE LINE TABLE

The Slope Line Table on the right is fascinating to many students when they see the patterns that the numbers create. It is identical to the Times Line Table except the numbers start at the bottom and the boxes are square. The first line at the bottom is the One times line. (One times the number is the same number). The second line is the 2 X line ($2 \times 4=8,2 \times 6=12 \ldots$). The third and fourth lines are the $3 x$ and $4 x$ lines (3 or 4 times the number is found in the Twos column). This is similar to the Times Line table.

What is amazing is that the One-times-line (1x), looking at the table as a graph, is also the slope line $\mathbf{y = 1 x}$. The Two times line ($2 x$) is the slope line $y=2 X$. This gives students similar results for $y=3 x, y=4 x \ldots$ Students now have a memory anchor for the angle of different slope lines.

Now students can look at a $\mathrm{y}=1 \mathrm{x}$ slope line and see a practical form that it takes that is real to them, that they created. They can remember that as the value of X gets larger, the slope line gets sharper, just as you multiply by a larger number, the number increases.

THE COLOR EZ TIMES TABLE

A fun color Table can be created with different colors for each number. This gives a nice graphic picture of how the different numbers relate. Making the EZTT in color is a right-brain way for students to help the number families come alive and make the Table visually appealing. This can be expanded to the EZ Facts table, adding colors for factors of the number.

THE IMPORTANCE OF PATTERN RECOGNITION

Kids notice patterns with all the Tables, like the Threes and Sixes are in the same rows, and that every other 4 is an 8, and that the Eights end with a repeated $8,6,4,2,0$ pattern. Students love the dot patterns and these patterns include numbers, and soon the numbers are easier. An older friend told me he was recruited to do early computer programming based, not on math ability, but on pattern recognition. The variations of the EZ Times Table all teach pattern recognition. Right-brain creative insights and learnings in life and in school are based on noticing patterns and seeing relationships.

Slope Line Table copyright 2007 Thomas Biesanz

NUMBER PATTERNS 10 x 10

From this page to the end of the book is extra for those students who enjoy seeing and playing with the patterns. In the top table on the next page, all ten columns are divided by dotted lines like the Ones, Twos, Nines and Tens were in the EZTT. These four columns are copied here and the numbers for the Threes, Fours, Sixes, and Eights are found in the EZTT or in the EZFT (EZ Facts Table). They are placed here with the dotted lines separating the the ones-digits (the single number to the right) and the tens-digits.

A learning progression is to have students create the EZTT with verbal instructions and use of an overhead projector, then create the EZTT on their own, then create the EZ Facts Table, and then this EZ $\mathbf{1 0 \times 1 0}$ Table. Each step helps the student see the fun patterns while learning the multiplication facts. This results in a form of the EZTT that is similar in some ways to a standard times table, but we have established patterns that we can continue to play with to see how full of fun patterns numbers can be.

NUMBER PATTERNS 10 x 20

The lower table is identical to the upper table, but is extended down to 20 rows. The Ones and Twos are already done past 20 rows in the EZTT and can be transferred to the empty table. The Ones can be put in the left column of the Tens and finished by putting zeros in the ones-digit column.

The ones-digits: Look at the EZTT and see that the ones-digit patterns repeat for every number (except that 3, 7 and 9 have ended in 0 and are ready to repeat). The dotted lines again divide each column into ones and tens columns. Repeat ones-digit patterns in all right columns for 2-9 all the way down the chart. Since 3, 7, and 9 ended in 0 , they start over with 3, 7, and 9 in the $11^{\text {th }}$ row and repeat their respective patterns from the EZTT.

The Tens digits: We already have the first ten rows for 3-9 in this chart from EZTT. To do the next tens-digit in 3-9, look at the number above on the ones-digit side. If the new ones digit number is larger, repeat the previous number on the left. If it is smaller, increase the number by one. For example, after 30 (tenth row of the Threes), the pattern indicates a shift from 0 to 3 in the ones-digit. Since the 3 is larger than the 0 , the tens-digit remains the same: 33 ($11^{\text {th }}$ row). After 39 the ones digit pattern indicates a shift from 9 to 3. Since the 3 is smaller, the tens increase to 4 , resulting in 42). Using this pattern works for all columns.

Look at how it works on the EZ Pattern 10×20 Table and re-create it using these rules on the empty EZ 20×20 Table when you turn the page.
Check MisterNumbers on Youtube.com for help creating this table.

Seeing the Patterns in the Ones-digits and Tens-digits

EZ Pattems 10×10 e2007 ton emonr									
9	7	5	3	1	2	4	6	8	10
09	07	5	3	1	2	4	6	8	10
18	14	10	6	2	4	8	12	16	20
27	21	15	9	3	6	12	18	24	30
36	28	20	12	4	8	16	24	32	40
45	35	25	15	5	10	20	30	40	50
54	42	30	18	6	12	24	36	48	60
63	49	35	21	7	14	28	42	56	70
72	56	40	24	8	16	32	48	64	80
81	63	45	27	9	18	36	54	72	90
90	70	50	30	10	20	40	60	80	100

Using the Patterns in the Ones-digits and Tens-digits

EZ Patterms 10×20 e2007 Tom Brome									
9	7	5	3	1	2	4	6	8	10
0 0	7	5	3	1	2	4	6	8	10
1 保	14	10	6	2	4	8	12	16	20
2 \%	11	15	9	3	6	12	18	24	30
3 B	28	20	12	4	8	16	24	32	40
45	35	215	15	5	10	20	30	40	50
51	42	30	18	6	12	21	36	48	60
63	49	35	21	7	14	28	42	56	70
7 2	56	40	24	8	16	32	48	64	80
7\%	63	45	27	9	18	36	54	72	90
9	70	50	30	10	20	40	60	80	100
9 9	77	5	33	11	21	44	66	88	110
1088	8.4	60	36	112	214	48	72	96	120
11%	91	65	39	13	26	5	7	10.4	130
12.8	98	70	42	14	28	56	8.4	112	140
135	105	715	45	15	310	60	90	120	150
144	112	80	48	16	32	64	96	128	160
1513	119	85	51	17	34	68	102	136	170
16:2	12.6	90	S 4	18	316	72	10%	14.4	18.0
171	133	95	57	$1{ }^{1}$	$3{ }^{8}$	76	114	1512	190
18:0	140	100	60	20	40	80	120	160	200

NUMBER PATTERNS TO 20×20

The top half of the EZ $\mathbf{2 0 \times 2 0} \mathbf{~ T a b l e ~ i s ~ t h e ~} \mathbf{E Z} \mathbf{1 0 \times 2 0}$ Table from the previous page. The bottom half is the EZ 11×20 patterns. These are lined up so that the Nineteens are located directly below the Nines, The Seventeens are located directly below the Sevens, etc. In the top half, the Ones show you the row numbers. There are numbers on the right to show the row number in the lower half of the Table.

Notice that the ones-digit in the right column have created a pattern in the 10×20 top portion of the Table and are exactly the same numbers in the same pattern in the Nines as in the Nineteens. This holds true for every column and you can fill in all the ones-digits in the Eleven to Nineteen columns simply be repeating the patterns established in the Ones to Tens columns above them!

See that this is true on the EZ 20×20 Table on the right and fill in those patterns on the blank EZ 20×20 Table when you turn the page. You may want to use your EZTT or the EZMFT to see the patterns. You have now created all the ones-digits for the 20×20 Table

Now we will use a similar pattern from the last page to create the tensdigits on the 11×20 part of the table. In the first row of 12-19, put a 1 in the left column to create the numbers 12-19, since the ones-digits are already in place. To do the next row, look at the number above on the ones-digit side.

If the new ones-digit number is larger, increase the previous number on the left by one. If it is smaller, increase the number by two (e.g. after 12, the ones-digit pattern indicates a shift from 2 to 4 in the ones digit. Since the 4 is larger than 2, the tens increase by 1 : resulting in 24 . After 48 the pattern indicates a shift from 8 to 0 . Since the 0 is smaller, the tens increase by two, resulting in 60). Use this pattern going down the tensdigit columns to fill in all the numbers.

You are done. I hope you made it through the maze of words because the patterns are fairly simple and creating the Table is satisfying.

You can actually start with a blank 20×20 table, fill in the Ones-digits from the Rule of Tens, and use the two rules for Tens-digits to fill in the whole table. There is also a blank 20×20 Table for you to fill in with these patterns. The Ones are filled in as well as the first row of 11-19 to get you started. Follow the instructions on the last pages and you will have created the times table to 20×20 from patterns without doing any multipying!

Creating EZ Patterns 20×20 in two parts（ 10×20 and 11×20 ）

EZ Patteris 10×20 e2007 Tom Brame									
9	7	5	3	1	2	4	6	8	10
09	7	5	3	1	2	4	6	8	10
1詺	14	1	6	2	4	8	12	16	20
2\％	21	1	9	3	6	12	18	24	30
$3{ }^{16}$	28	20	12	4	8	16	24	312	40
45	35	2	15	5	10	20	30	40	50
54	412	3	18	6	12	24	36	$4{ }^{8}$	60
63	49	3	21	7	14	28	42	56	70
72	56	40	2.4	8	16	32	48	6.4	80
$\underline{1}$	63	4	27	9	18	36	54	72	90
90	70	50	30	10	20	40	60	80	100
9 9	77	5	33	11	21	44	66	88	110
108	84	6	36	1 1	24	48	72	96	120
11 ？	91	6	39	13	26	52	78	10.4	130
12.	98	70	42	14	28	56	8.4	112	140
13 \％	105	7	45	15	30	60	90	120	150
144	112	8	48	16	32	64	96	128	160
153	119	8	51	17	3.4	68	102	136	17.0
16\％	12.6	90	S 4	18	36	72	108	14：4	180
171	133	9	57	$1{ }^{19}$	$3{ }^{1}$	76	114	1512	190
18\％	140	1010	60	20	40	80	12：0	160	200
EZ Patterms 11×20 e20007 Tomm nivinn									
19	17	15	13	11	12	14	16	18	20
19	17	1	13	11	12	14	16	18	20
3 B	314	30	26	21	214	28	32	36	40
5	51	4	39	$3{ }^{3}$	36	42	48	54	60
7\％	68	6.	52	44	48	56	64	71	80
95	85	7	65	5	60	70	80	90	100
114	102	90	78	6	72	814	96	108	120
133	119	10	91	37	8.4	98	112	126	140
152	136	120	10.4	8征	96	112	12．8	14.4	160
131	153	13	117	9	10	126	144	16：	180
190	170	150	130	110	120	140	16.4	180	200
209	187	16	143	121	132	15.4	176	198	220
22 策	20.4	180	156	13㣙	14.4	168	192	216	240
243	271	191	169	143	15.6	182	20.8	234	260
26：6	238	210	$18: 2$	15：4	16：8	196	22.4	251	28.0
2！ 5	25	22	19：5	165	180	210	240	27.0	300
304	27.2	240	208	17%	197	224	2 S	28	320
323	289	25	22.1	187	20.4	238	272	30.6	340
342	30.6	270	234	19 廊	216	252	28.8	32.4	360
3611	32：3	28	24.7	20 年	22.8	26： 6	30.4	34：7	380
38\％	340	3010	260		240	280	32：	3610	400

[^4]Create your own 20×20 Times Table here from Patterns ${ }^{137}$

EZ Patterns in Ones through Tens 02007 Tom B imamz									
9	7	5	3	1	2	4	6	8	10
T				1					
				12					
				3	,		,		
				${ }^{1}$					
				5					
				6	+				
				7					
			.	8	,	,	?		
				9	.				
				110	-				
				11					
				12					
				13					
				14					
				15					
				$1{ }^{1} 6$					
				17					
				18	,				
$\stackrel{1}{1}$				$1{ }^{1}$,		
:				20			i		
EZ Patterms in Elevens Through Twenties e2007 Tam emmes									
19	17	15	13	11	12	14	16	18	20
19	17	15	13	11	12	14	116	18	20
,				$\stackrel{1}{1}$					
					-				
					,		,		
$\stackrel{1}{1}$							$\stackrel{1}{1}$		
,					-				
$\stackrel{1}{1}$									
¢			.		.				
			-		-				
$\stackrel{1}{1}$									

EZ RULER TABLE

This EZ Ruler Table is created on a blank sheet of paper with just a $\mathbf{1 "}^{\prime \prime}$ wide ruler and a pencil. It is interesting to view new patterns and see how the Threes and Sixes, and Fours and Eights are connected. It is also possible to re-create part or all of it in a testing situation. I suggest doing an EZTT first because it will establish how to create the Ones and Twos accurately. Neatness helps and variations are included at the bottom of this page. The next few pages will demonstrate the steps in creating the EZ Ruler Table.

1. Put the ruler along the top of the page and draw a line on the lower side.
2. Put the pencil tip roughly in the center of that line and draw a line down the page perpendicular to the first line. Accuracy is not important here.
3. Put the top of the ruler on the horizontal line and draw a line on the lower side of the ruler making a parallel line. Repeat until you have 9 evenly spaced horizontal lines.
4. Put a big 1 above the left side of the T made by the first two lines. Placing four numbers per line, put the numbers $1-32$ just to the left of the vertical line.
5. Put a big 2 above the right side of the T made by the first two lines. Using four numbers per line, put the even numbers 2-64 just to the right of the vertical line.
6. Put a small-circled 3 above the big 1 and 2. Count every third set of numbers (3 and 6, 6 and 12, 9 and 18, etc.) and enclose with an oval.
7. Put a 48 in a rectangle above the big 1 and 2. Put a rectangle enclosing numbers that are just above the lines. Rectangles create the 4's and 8's. Starting at the vertical line, draw horizontal lines to the left under the 1, 2, $3,5,6,7,9$, and 10 (lines are already under the 4 and 8).
8. Put a big 5 to the left of the big 1. Count by Fives down to 50 in the ten spaces.
9. Put a big 9 to the far left of the big 1. Put a vertical dotted line down the ten spaces. Put 0-9 going down the left side of the dotted line and 0-9 going up the right side of the dotted line. This creates the Nines.
10. Put a big 7 between the big 5 and the big 9 . Put 49 in the seventh space.

You are done. Count the circles to multiply by 3 and 6 and count the lines to multiply by 4 and 8 . The other numbers are similar to the EZTT.

Variations: Use these variations to make the Table neater and give more and faster answers.

1. Use dotted lines for the Ones and Twos column for accuracy.
2. Number the horizontal lines starting with 1 after the first four numbers. This gives the number for multiplication by 4 and 8 . The sixth line: 4×4 $=16$ and $4 \times 8=32$. Also number the ovals for multilplying by 3 and 6 .
3. Extending the Ones and Twos to 36 and 72 below the last horizontal line gives more answers.
4. Count down every 5th set of numbers and put an arrow in front of the numbers in the Ones and Twos columns. This creates your Fives and Tens.
5. Create these patterns on the EZTT after creating the Ones and Twos. The last Table shows the variations and tips on how to use this Table. Enjoy!

EZ RULER TABLE steps 1-5

$$
\text { EZ RULER TABLE steps } 6 \text { and } 7
$$

1	
3	6
4	8
5	10
6	12
7	14
8	16
9	18
10	20
11	22
12	24
13	26
14	28
15	30
16	32
17	34
18	36
19	38
20	40
21	42
22	44
23	4.6
24	48
25	50
26	52
27	54
28	56
29	58
30	60
31	62
32	64

EZ RULER TABLE steps 8-11

Fun Patterns in Numbers

$1 \times 1=1$
$11 \times 11=121$
$111 \times 111=12321$
$1111 \times 1111=1234321$
$11111 \times 11111=123454321$
$111111 \times 111111=12345654321$
$1111111 \times 1111111=1234567654321$
$11111111 \times 11111111=123456787654321$
$1 \times 9+2=11$
$12 \times 9+3=111$
$123 \times 9+4=1111$
$1234 \times 9+5=11111$
$12345 \times 9+6=111111$
$123456 \times 9+7=1111111$
$1234567 \times 9+8=11111111$
$1234568 \times 9+9=111111111$
$123456789 \times 9+10=1111111111$
$6^{2}=36$
$66^{2}=4356$
$666^{2}=443556$
$6666^{2}=44435556$
$66666^{2}=4444355556$
$666666^{2}=444443555556$
$6666666^{2}=4444443555556$
$1 \times 8+1=9$
$12 \times 8+2=98$
$123 \times 8+3=987$
$1234 \times 8+4=9476$
$12345 \times 8+5=98765$
$123456 \times 8+6=987654$
$1234567 \times 8+7=9876543$
$12345678 \times 8+8=98765432$
$123456789 \times 8+9=987654321$
$9 \times 9+7=88$
$98 \times 9+6=888$
$987 \times 9+5=8888$
$9876 \times 9+4=88888$
$98765 \times 9+3=8888 B 8$
$987654 \times 9+2=$ B88B888
$9876543 \times 9+1=\mathbf{8 8 B 8 8 B 8 8}$

5ee EZTimes TaHe pp 54－SB． It＇s Ensy PightBrainilutheom
Directions for making the Ones and Nines w／patterns The numbers on this page are the pattern for the Ones and Nines．The Ones are easy，the numbers 1－0 repeated in the ones－digit place．When we get to 0 ，there is an above it be－ cause the tens－digit gets bigger． You are making 10 in each row so the last column ends in 10， $20,30,40$ ，etc． The Nines work the same way． Each number after the first 9 is smaller，so the tens－digit has to get bigger，and has an over it． Starting with 0 in front of the first 9，put a 1，2，3，4，5，6，7，8， and 9 in front of the other num－ bers．You have created the Nines．You can continue in the next row，repeating the 9 in front of the second 9 ，and then $10,11,12,13,14,15,16,17$ ，and 18．You are now at 9×20 ．

Creating the Ones and Nines from fun pattems
Ones e \quad hoos Thomes Bessanz \quad http／／RightBrainMathcom

Nines
点点点名占名占点

Right Brain Math 2's, 4's, 6's and 8's
Create your own Twos

2	4	6	8	0
2	4	6	8	0
2	4	6	8	0
2	4	6	8	0

Create your own Eights netarimethan

Create your own 4's

4	8	2	6	0
4	8	2	6	0
4	8	2	6	0
4	8	2	6	0
4				

Create your own 6's arong Thomas Biesarz

6	2	8	4	0
6	2	8	4	0
6	2	8	4	0
6	2	8	4	0

The ones-dipits repert for each factor set. Start the tens-dipits with 0 and add 1
 emon time the column has a amaller number to its left, indimoted by an $\boldsymbol{1}$ above

0	8	9	t	Z	
0	8	9	t	τ	
0	8	9	t	τ	
0	8	9	t	r	
0	8	9	t	z	
0	8	9	t	Z	
0	8	9	t	Z	
0	8	9	†	r	
0	8	9	t	て	
(8)	8	9	t	ح	

[^5]| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | X | X | X | X | Directions for Making the Fights Time Table from Patterss to 4100
 The numbers on this pape aet the pattem for the |
| 8 | 6 | 4 | 2 | 0 (x) | |
| 8 | 6 | 4 | 2 | 0 (zal) | |
| 8 | 6 | 4 | 2 | 0 | These are the nues-digit numbers, that we can crill the Onesinst. They repet as the Fights git leger. |
| 8 | 6 | 4 | 2 | 0 (28) | |
| 8 | 6 | 4 | 2 | 0 (2) | |
| 8 | 6 | 4 | 2 | 0 (z3) | (ex |
| 8 | 6 | 4 | 2 | 0 (3) | |
| 8 | 6 | 4 | 2 | 0 (x (1) | Pra bux hax X Owritit |
| 8 | 6 | 4 | | | |
| 8 | 6 | 4 | 2 | 0 (84) | See EZ Tims Thale, pr 54.58 for more iff |
| 8 | 6 | 4 | 2 | 0 (sis) | E2003 Rifiturimath |

Stais out o8, 16, 24, 2008 Right Brain Win hilisfightrainMath.com WisterNumters on Youtube

回
茄 These are the ones-digit monbers, that we can
mill the Onesties. They repect is the Fours git

Tince Table fron Patterins Directions for Making the Sixes
шор

See EZ Times Trble pp 4 -SB It's EZ RififirinMancom

The n whbers inn this page are the pethen for
the Sixes $(6,2,8,4$, and 0$)$, and are reperied.
These are the ones-digit monbers, that we can gll the Ones-iex. Thry repert as the Sixes get leger.
We will nse a sinile paltern to create the
tras-digit numbers tor grin frint of the Ones in
The sinple pritemis is to repeat the tens-digit The (Te pare befue number (Tens-ie) befine it unlexs the columan has min over it If there is ant, add une to the phevicus Tens-ic. The pattron fir the Tens ins is: "same, up, some, up, ب" . Say thrin ind loud The last number of each inve will be 5 times 6 , 10 times 6,15 times 6, up to 50 times 6. See EX Tines Thble, Pp 54-58 fir more info cn hary and why this works and the Role af Tems
C2009 Thrmas Bietmz Right Prim Math ttp://www-youtube com/watch? $\mathrm{v}=\mathrm{rnvO}$ USYPd0Y

 See MisterNumbers video on 4 s and 6 s at RightBrainMath.com/experience OR on Youtube:

Twos on a Number Circle: An Atomic Pentagon

Go around the numbers $2,4,6,8$, and 0 in the circle and make a pentagon. Each time you reach 0 , jump out one ring and go around again clockwise. The rings keep getting bigger and bigger and contain all the Twos.

Chart for mintinding Nequtive Numbers										
-10:8	-84	-60	-3=1	-1!2	-2:4	-4x5	-fix	-Baz		20
-9:9	-77	-55	-	-1!	-2:2	-	-	-		10
-9:0	-70	-50	-	-1:0	-2:0	-45	-	-	-10	0:0
-8! 1	-63	-45	-3-1	-0:9	-1:8	-	-6is	-		$9: 0$
-7! 2	-56	-40	-	-0!8	-16	-4x4	-	-870		8
-6:3	-49	-35	-	-0:7	-1:4	-	-	-		7:0
-5! 4	-42	-30	-3.2	-0:6	-1:2	-43	-6iz	-		6:0
-4:5	-35	-25	-	-0:5	-1:0	-	-	-		$5: 0$
-3:6	-28	-20	-	-0:4	-0:8	-4z	-	-8in		40
-2!7	-21	-15	-3×1	-0:3	-0:6	*	-6isi	-		3:0
-1:8	-14	-10	*	-0!2	-0:4	-4×1	-	-		20
-0:9	-7	-5	*	-0:1	-0:2	-	-	-		10
0	7	5	-	1	2	*	-	-		0
1:8	14	10	-	2	4	4×1	-	-		0
2:7	21	15	3×1	3	6	-	6ix1	-		0
3!6	28	20	-	¢ 4	8	48	-	Bra	4	0
$4!5$	35	25	-	5	10	*	-	-	5	0
5:4	42	30	3 n	6	12	48	Gin	-	6	0
6:3	49	35	-	\% 7	$1: 4$	*	-	-	7	0
7!2	56	40	-	8	16	484	*	Buz		0
8:1	63	45	3a	9	1 ¢	*	Giver	-	9	0
9:0	70	50	-	$1 \vdots$	20	45	-	-	10	0
$9: 9$	77	55	*	1:1	2:2	*	-	-	11	D
10:8	84	60	3×4	1:2	2:4	4×5	Gint	Bu	12	D

Multiolying with negative numbers just maves more friends to play with. Fane themn (Fike the child above) if you are multiplying by a negrive number and then goo forward if multiolying that by a positive number or step bookward (neqative direation) if multiplying ty a negrative number.

Can you see that multiplying a negative mumber (facing them) ty a positive mumber (going forward) will take you ints the negative rumbers (Plue timan Binus $=$ Minur, Multiplying negative numbers (facing them) by a negative number (xtepping backwards) will take you into the positive numbers (MinuF timan Minus = Plun),

Fours on a Number Circle:

 An Atomic STAR

Go around the numbers $4,8,2,6$, and 0 in the circle and make a STAR. Each time you reach 0 , jump out one ring and go around again clockwise. The rings keep getting bigger and bigger and contain all the Fours.

Sixes on a Number Circle: An Atomic STAR

Go around the numbers $6,2,8,4$, and 0 on the circle and make a STAR. Each time you reach 0 , jump out one ring and go around again clockwise. The rings keep getting bigger and bigger and contain all the Sixes.

Eights on a Number Circle: An Atomic Pentagon

Go around the numbers $8,6,4,2$, and 0 in the circle and make a pentagon. Each time you reach 0 , jump out one ring and go around again counterclockwise. The rings keep getting bigger and bigger and contain all the Eights.

Twos \& Eights on a Number Circle: Fill in the Atomic Pentagons

Go around this number wheel clockwise and fill in the first ring of circles to create the TWOS. The first ring will be $\mathbf{2 , 4 , 6 , 8}$, and 10 . Continue to the next ring. The last ring will end at forty. Now on another copy, go around counter-clockwise to create the EIGHTS. The first ring will be $8,16,24,32$, and 40 . The last ring will end at 160 . See the Eights worksheet for a demo(http://www.eztimestable.com/EZlmages/Eights_AtomicWorksheet.pdf)

EZ T I M E S TA B L E							
	dumbers						
.							
-							
-							
-							
Cb d							

EZ TIMES TABLE

		Odd Numbers		1	2	Even Numbers			
9	7	5	3			4	6	8	10
0,9	7	5	-	! 1	12	-	-	-	110
118	14	10	-	12	14	4×1	-	-	210
2!7	21	15	3x1	13	\%	-	6×1	-	310
3!6	28	20	-	,4	;	4×2	-	8×1	4:0
4:5	35	25	-	! 5	1:0	-	-	-	5:0
5,4	42	30	3x2	\bigcirc	1:2	4×3	6x2	-	6:0
6:3	49	35	-	17	1:4	-	-	-	7:0
712	56	40	-	\%	1:6	4×4	-	8×2	8:0
8:1	63	45	3×3	19	1:8	-	6×3	-	9:0
9:0	70	50	-	1:0	2:0	4×5	-	-	10:0
			-	1:1	2:2	-	-	-	
			3×4	1:2	2:4	4×6	6×4	8×3	
			-	1:3	2:6	-	-	-	
			-	1:4	2:8	4×7	-	-	
			3×5	1:5	3:0	-	6×5	-	
			-	1:6	3:2	4×8	-	8×4	
			-	1:7	3:4	-	-	-	
			3×6	1:8	3:6	4×9	6×6	-	
			-	1:9	3:8	-	-	-	
			-	2:0	$4: 0$	4×10	-	8×5	
			3×7	2:1	$4: 2$	-	6×7	-	
			-	2:2	4:4	4	-	-	
			-	2:3	$4!6$	-	-	-	
			3×8	$2: 4$	418	4	6×8	8×6	
			-	2:5	5:0	-	-	-	
			-	2:6	5:2	4	-	-	
			3×9	2:7	5:4	-	6x9	-	
			-	2:8	5:6	4	-	8×7	
			-	2:9	5:8	-	-	-	
			3×10	3:0	6:0	4	6×10	-	
			-	3:1	6:2	-	-	-	
			-	3:2	6:4	4	-	8×8	

$0 \times$ any number $=0$
Color EZ Times Table ©2007byThomas Biesanz http://EZTimesTable.com

Thanks to all my friends and contributors for helping me help kids

-MisterNumbers

a few MisterNumbers images included below

MisterNumbers TicTacToe Squares for $1 \mathrm{~s}, 3 \mathrm{~s}, 7 \mathrm{~s}$, and 9 s eMisterNumbers2014

$\ldots 0$

PRE-NUMBER PATHEUNNS,
anglis. DICE ADD 2FHOS?
9
2
\vec{b}

O	－	ナ	の	\bigcirc	！	\bigcirc	の	＋	－1	O	－1	＋	の	\bigcirc	■	\bigcirc	の	－	－	O
0	－	\bigcirc	0	\cdots	N	M	－	\bullet	∞	0	$\underset{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{+}{+}$	\bigcirc	9		$\stackrel{\mathrm{n}}{\mathrm{~N}}$	$\underset{\sim}{\infty}$	$\underset{\mathbf{N}}{ }$	0	－
＋				＋				＋						＋						＋
0	\cdots	N	m	\％	！	\bigcirc	N	∞	の	\bigcirc	$\begin{aligned} & \mathrm{F} \\ & -1 \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{M}{-1}$	$\underset{-1}{+}$	$\left\lvert\, \begin{array}{\|l\|l\|l\|} \hline 1 \end{array}\right.$	$\begin{aligned} & 0 \\ & -1 \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{9}{-1}$	10

An ingenious trick and practical math tool to help you know what day any date falls on

Thomas Biesanz
aka MisterNumbers
(over a million video views)

Threes, Sixes, Nines on TicTacToe Squares

The SIXES show up in a diamond pattern

$$
\begin{array}{l|l|l}
3 & 6 & 9 \\
\hline 12 & 15 & 8 \\
\hline 2124 & 27 & 30
\end{array}
$$

$$
33
$$

$$
39
$$

3	06	09	
	2	15	18
2	24	27	30
3	36	39	
2	45	48	
	5	54	57
6	60		
2	66	69	
2	75	78	
	84	87	90

Make your own Threes	03	06	09	
	12	15	18	
	21	24	27	30
Circle the diamond Sixes	33	36	39	
	42	45	48	
	51	54	57	60
	63	66	69	
	72	75	78	
RightBrainMath.com	81	84	87	90

Make your own Threes	03	06	09	
12	15	18		
21	24	27	30	
Circle the diamond Sixes	33	36	39	
Circle the sets of Nines	42	45	48	
51	54	57	60	
	63	66	69	
72	75	78		
81	84	87	90	

Eights on a Number Wheel w/ Table

Eights: The ones-digit pattern is 8,6,4,2,0 We will now create the tens-digits pattern

Eights: The ones-digit pattern is 8,6,4,2,0
We will now create the tens-digits pattern

Eights: The ones-digit pattern is 8,6,4,2,0 We will now create the tens-digits pattern | 08 | 16 | $\underline{2} 4$ | $\underline{3} 2$ | 40 |
| ---: | ---: | ---: | ---: | ---: |
| 48 | 56 | $\underline{6} 4$ | $\underline{1} 2$ | 80 |
| -8 | -6 | -4 | -2 | -0 |
| 8 | 6 | 4 | 2 | 0 |

Eights: The ones-digit pattern is 8,6,4,2,0 We will now create the tens-digits pattern

08
16
24
32
40
48
56
64
72

Fours on a Number Wheel

FOURS: The ones-digit pattern is 4,8,2,6,0 We are creating the tens-digits pattern

FOURS: The ones-digit pattern is 4,8,2,6,0 We are creating the tens-digits pattern

FOURS: The ones-digit pattern is $4,8,2,6,0$ We are creating the tens-digits pattern

FOURS: The ones-digit pattern is 4,8,2,6,0 We are creating the tens-digits pattern

FOURS: The ones-digit pattern is 4,8,2,6,0 We are creating the tens-digits pattern

04	$\underline{0} 8$	$\underline{12}$	16	20	$\times 5$
24	28	32	$\underline{3} 6$	40×10	
44	48	52	56	60×157	
64	68	72	76	80×20	6

FOURS: The ones-digit pattern is 4,8,2,6,0 We are creating the tens-digits pattern

FOURS: The ones-digit pattern is 4,8,2,6,0 We are creating the tens-digits pattern

Fractions, Decimals, PerCent

Ten PerCent, 1/10th, one dime

Similar ways to show. I

Twenty PerCent, 2/10th, two dimes ${ }^{192}$

Similar ways to show . 2 Tenths on a (1)

,

Decimals
2/I0
or I/5
Fractions

Dimes

Percent:

Thirty Per Cent,3/10th, three dimes

Similar ways to show . 3

. 3

Parts of a Dollar	$\times \times \times 1$

Decimals

 3/10
 Fractions

Tenths on a
 number wheel 30\%

Percen:

Forty Per Cent, 4/10th, Four dimes

Similar ways to show 4
 lecimals 4/I0 or 2/5

Tenths on a

40\%

Fifty Per Cent, 5/10th, Five dimes

Similar ways to show . 5

Parts of a Dollar

Decimals 5/10 or I/2
 Dimes

Fractions

50\%
Percentiz

Sixty Per Cent, 6/10th, Six dimes

Similar ways to show . 6 Tenths on a
 or $3 / 5$
 Fractions
 Parts of a Dollar
 Dimes

 60\%
 Percent:

Seventy Per Cent, 7/10th, Seven dimes

Similar ways to show . 7
Tenths on a

Eighty Per Cent, 8/10th, Eight dimes

Similar ways to show . 8

iecimals
Tenths on a

8/10

 or 4/5Fractions

80\%

Percentit

Eighty Per Cent, 4/5th, Eight dimes

Ninety Per Cent, 9/10th, Nine dimes

Similar ways to show . 9
Tenths on a

Decimals 9/10

One Hundred Per Cent, 10/10th, Ten dimes

Similar ways to show I.U

Numbers that add up to 10 use the same patterns
 1 and 9
 3 and 7
 2 and 8
 4 and 6

Number Line

Testimonials

My daughter absolutely loves it! I think all children would benefit from this approach to math whether they are right or left brain learners. This approach offers a different way of looking at numbers and the way they work. You are actually able to see patterns, which makes learning addition, subtraction, multiplication, and division easier.
-Shannon Mendez, Homeschooler

Testimonials

My daughter absolutely loves it! I think all children would benefit from this approach to math whether they are right or left brain learners. This approach offers a different way of looking at numbers and the way they work. You are actually able to see patterns, which makes learning addition, subtraction, multiplication, and division easier.
-Shannon Mendez, Homeschooler

Testimonials

LOVE IT, LOVE IT, LOVE IT, LOVE IT...I have a third grader and this is working like a charm. I, myself have learned the times tables better. Thank you so very much.
-Tiffany Larkin

Testimonials

My child responded to the right brain math DVD the same way I did, with absolute amazement. Everyone I have shown it to has been amazed. The visual presentation of times tables in patterns was so powerful to me as an adult who has been through the old school method of just memorizing.

- Cheryl Rafferty, mom of 3 elementary students

Testimonials

I received your book yesterday, It's totally amazing, I'm 34 years old and for the first time in my life I am finally understanding how numbers work and slowly my fear of numbers is lessening... Thank you Mister Numbers, You have just opened up a whole new world to me and I am so grateful.

-Clare Price

Testimonials

Everything about your program is just fantastic! We have thoroughly enjoyed learning Right Brain Math. I teach 3rd and 4th graders at a small school for children with learning differences: dyslexia, $A D D$, processing issues. I couldn't believe their reaction the first time we did a number wheel. Their eyes lit up and they were so excited to see the pattern they created! "WOW and AWESOME" were two words used a lot during that math lesson. They immediately wanted to do more and had the same reaction to each one.
-Donna Talbot

Testimonials

I strongly recommend EZ Times Tables created by Tom Biesanz as an innovative way to teach multiplication and division. This wonderful visual tool helps students make friends with numbers. Both students who have had trouble memorizing their multiplication tables and students who are just being introduced to multiplication and division respond with enthusiasm to this system.
-BevAbrams, Santa Barbara Charter School principal

Testimonials

I love it! I got the DVD and EZ times tables for my daughter. She'll pause a math video game and reference her EZ times tables for the answer. She no longer has tantrums when learning math! 5 stars all the way!
-Mary Dearborn

Testimonials

Tic-Tac-Toe was a HIT!!!! My daughter writes them quickly on the math homework sheets. This DVD and Workbook (Right Brain Math Book) could be a great tool to add in Math TEXTBOOKS.

-Judy Reston

Sevens on Tic Tac Toe Squares

We add the 4-5-6 n front of the third row.

We add the 4-5-6

in front of the third row. | 07 | 14 | 21 |
| :--- | :--- | :--- |
| 28 | 35 | 42 |
| 49 | 56 | 63 |

The first row is $7 \times 1,7 \times 2, \& 7 \times 3$ | $\substack{7 \times 1=7 \\ 7 \times 2=14 \\ 7 \times 3=21}$ | 14 | 14 |
| :--- | ---: | ---: |
| 28 | 35 | 42 |
| 49 | 56 | 63 |

Drop the 7 down from 1st box

Drop the 7 down from 1st box

Sixes on a Number Wheel

SIXES: The ones-digit pattern is 6,2,8,4,0 We will now create the tens-digits patterr | -6 | -2 | -8 | -4 |
| ---: | ---: | ---: | ---: |
| -6 | -2 | -8 | -4 |
| -6 | | | |
| -6 | -2 | -8 | -4 |
| -6 | 2 | 8 | 4 |

$$
\begin{array}{lllll}
36 & 42 & 48 & 54 & 60
\end{array}
$$

Squares

$$
\begin{array}{l|l|l}
0 \times 0= & 0 \\
1 \times 1= & 1 \\
2 \times 2= & 4 \\
3 \times 3= & 9 \\
4 \times 4=1 & 6 \\
5 \times 5=2 & 5 \\
6 \times 6=3 & 6 \\
7 \times 7=4 & 9 \\
8 \times 8=6 & 4 \\
9 \times 9=8 & 1 \\
\times 10=10 & 0
\end{array}
$$

I believe that YOU can
create the squares from
l-40 or higher in a
couple minutes

$$
\begin{aligned}
& 1 \times 1=\mid 1 \\
& 2 \times 2=\left|\begin{array}{l}
1 \\
3 \times 3= \\
4 \times 4=1
\end{array}\right| 9
\end{aligned}
$$

All you need to know is the squares of $I, 2,3,4$
And be able to add a I-digit-number to another number: like $152+8$
You can do that!

\square		Put the same I-4-9-6 pattern to the right of $\mathrm{II}-\mathrm{I} 4,2 \mathrm{I}-24$, etc It makes sense that squaring any number ending in 1 will square to 1 , number ending in 2 will square to 4 , number ending in 3 will square to 9 number ending in 4 will square to 6

NOW put the same I-4-9-6 pattern going UP from 0

WHAT? HOW? WHY?

It makes sense that squaring any number ending in 9 will square to 1 , number ending in 8 will square to 4 , number ending in 7 will square to 9 number ending in 6 will square to 6
\underline{m}

NOW put the same I-4-9-6 pattern going UP from 0

WHAT? HOW? WHY?

It makes sense that squaring any number ending in 9 will square to 1 , number ending in 8 will square to 4 , number ending in 7 will square to 9 number ending in 6 will square to 6

| N\|l|lo | $\stackrel{1}{\infty}_{\stackrel{-}{2}}$ | $\stackrel{\rightharpoonup}{-}$ | - | | 4 | $\stackrel{+}{+}$ | $\stackrel{\leftrightarrow}{\omega}$ | N | U | $\stackrel{ }{-}$ | | | | | v | 0 | | | \pm | | ω N | | \bullet - | | |
| :---: |
| \pm | | | | $\stackrel{+}{+}$ | | | | | | | + | | | | | | \pm | | | | | | + | | |
| | | | | | | | | | | | | | | | + | ω | N | N | - | 0 | - | | - | | 0 |
| $0 \bullet$ | + | 0 | 0 | | v | の | 1 | | D | $\stackrel{ }{-}$ | 0 | $1+$ | | A | \bigcirc | 0 | a | \checkmark | の | 6 | | | - | | 0 |

Watch this video to square ANY number: CLICK HER
up by 1: 1, 2, 3, 4
creating $16,25,36$, and 49

0	00	
1	0	
2	0	4
3	0	9
4	1	6
5	2	5
6	3	6
7	4	
8	6	4
9	8	1
10	100	
11	1	1
12	4	4
13	9	9
14	6	6
15		5
16		6
17		9
18		4
19		1
$20+4$		0

Squares to 40	
21	1
22	4
23	9
24	6
25	5
26	6
27	9
28	4
29	1
30	0
31	1
32	4
33	9
34	6
35	5
$36+7$	6
37	9
38	4
39	1
40	0

After the 2nd line, tens go

 up by 2 : 6, 8, 10, I2, 14, 16 (notice these are all multiples of 2)creating $64,8 \mathrm{I}, 100$, 121,144 and 169 Watch this video to square ANY number: CLICK HER

0	00
1	01
2	04
3	09
4	16
5	25
6	36
7	49
8	64
9	81
10	100
11	121
12	144
13	169
14	196
15	22^{5}
16	256
17	289
18	4
19	1
20	0

Squares to 40	
21	1
22	4
23	9
24	6
25	5
26	6
27	9
28	4
29	1
30	0
31	1
32	4
33	9
34	6
35	5
$36+7$	6
37	9
38	4
39	1
$40{ }^{+8}$	0

0			0	Squares to 40			
1		0	1	21		44	1
2		0	4	22		48	4
3		0	9	23		52	9
4	$+1$	1	6	24			6
5		2	5	25			5
6		3	6	26			6
7		4	9	27			9
8	$\begin{aligned} & \frac{8}{9} \\ & \frac{1}{0} \\ & \frac{1}{2} \\ & \frac{1}{3} \end{aligned}+2$	6	4	28			4
9		8	1	29			1
10		10	0	30			0
11		12		31			1
12		14		32			4
13		16	9	33			9
$\left.\frac{4}{\frac{4}{6}}\right\|^{+3}$		19	6	34			6
		22		35			5
		25		36	+7		6
		28		37			9
18	$\frac{8}{9}+4$	32		38			4
19		36		39			1
20		40		40			0

After the 4th line, tens go up by 4 : 32, 36, 40, 44, 48, 52 (notice all multiples of 4) creating 324, 36I, 400, 44I, 484, 529

0	00
1	0
2	04
3	09
4	16
5	25
6	36
7	49
8	64
9	8
10	100
11	121
12	144
13	169
14	196
15	225
16	256
17	289
18	324
19	361
20	400

Squares to 40		
21	44	1
22	48	4
23	52	9
24	57	6
25	62	5
26	67	6
27	72	9
28		4
29		1
30		0
31		1
32		4
33		9
34		6
35		5
$36+7$		6
37		9
38		4
39		1
$40{ }^{+8}$		0

After the 5th line, tens go up by 5 : 57, 62, 67, 72
creating $576,625,676,729$

Squares to 40		
21	44	1
22	48	4
23	52	9
24	57	6
25	62	5
26	67	6
27	72	9
28	78	4
29	84	1
30	90	0
31	96	1
32	102	4
33	108	9
34		6
35		5
$36+7$		6
37		9
38		4
39		1
40		0

After the 7th line, tens go up by 7 : II5, I22, I29, I36, creating II56, I225, I296, I369

After the 8th line, tens go up by 8 : 144, I52, 160, etc (notice all multiples of 8)

 creating I444, I52 I, 1600, Continue as high as you like
Square Any Number up to 100

Square a number like 22

Go to a nearby multiple of 5 .
The Tens-digits add or subtract $1 / 5$ of that number.

Start from	5	10	15	28	25	30	40	50	60	75	100
Up or Down	1	2	3	4	5	6	8	10	12	15	20

$$
\begin{array}{clll}
20 / 5=4 & 20^{2} & 400 & \\
\text { One } 4=4 & 21^{2} & 44 & 1 \times 1=1 \\
\text { Two } 4 s=8 & 22^{2} & 48 & 2 \times 2=4
\end{array}
$$

Twos on a Number Wheel

Twos: The ones-digit pattern is 2,4,6,8,0 We are creating the tens-digits pattern

$-^{2}$	-4	$-^{6}$	-8	-0
$-^{2}$	-4	$-^{6}$	-8	-0
$-^{2}$	$-^{4}$	$-^{6}$	-8	-0

Twos: The ones-digit pattern is 2,4,6,8,0 We are creating the tens-digits pattern

Eights on a Number Wheel

MisterNumbers TicTacToe Squares for $1 \mathrm{~s}, 3 \mathrm{~s}, 7 \mathrm{~s}$, and 9 s
eMisterNumbers2014

\|EZ TIM ESTABLE						
-						

EZ TIMES TABLE									
Odd Numbers				1	2	Even Numbers			
9	7	5	3			4	6	8	10
0:9	7	5	-	11	12	-	-	-	$1: 0$
118	14	10	-	12	14	4×1	-	-	210
$2: 7$	21	15	3×1	13	6	-	6×1	-	3:0
3:6	28	20	-	14	8	4×2	-	8×1	4:0
415	35	25	-	'5	1:0	-	-	-	510
5:4	42	30	3×2	¢ 6	1:2	4×3	6×2	-	6:0
6!3	49	35	-	17	1:4	-	-	-	710
712	56	40	-	8	$1: 6$	4×4	-	8×2	8:0
8:1	63	45	3×3	19	1:8	-	6×3	-	9!0
910	70	50	-	1:0	2:0	4×5	-	-	10'0
			-	111	2:2	-	-	-	
			3×4	1:2	2:4	4×6	6×4	8×3	
			-	1:3	2:6	-	-	-	
			-	1:4	2!8	4×7	-	-	
			3×5	1:5	3:0	-	6×5	-	
			-	$1: 6$	3:2	4×8	-	8×4	
			-	1:7	3:4	-	-	-	
			3×6	1:8	3:6	4×9	6x6	-	
			-	119	3:8	-	-	-	
			-	2:0	410	4×10	-	8×5	
			3×7	2:1	$4!2$	-	6×7	-	
			-	2:2	4:4	4	-	-	
			-	2:3	$4: 6$	-	-	-	
			3×8	$2: 4$	4	4	6x8	8×6	
			-	2:5	5:0	-	-	-	
			-	2:6	5:2	4	-	-	
			3x9	2:7	5:4	-	6x9	-	
			-	2:8	5:6	4	-	8×7	
			-	2:9	5:8	-	-	-	
			3×10	3:0	6:0	4	6×10	-	
			-	3:1	6:2	-	-	-	
			-	3:2	6:4	4	-	8×8	

Importance of students learning Ten Adds

Our number system is ten base so Ten, and the numbers that add up to 10, are very important for kids when learning addition, subtraction and multiplication, They show up on the number wheel in cool ways that can help kids with basic addition. Start with the five at the bottom.

Cube Numbers and Ten Adds

Another place that Ten Adds show happens when any number is cubed.

Numbers ending in:	Cube ends in:
$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$
2	$\mathbf{8}$
3	7
4	$\mathbf{4}$
$\mathbf{5}$	$\mathbf{5}$
$\mathbf{6}$	$\mathbf{6}$
7	$\mathbf{3}$
$\mathbf{8}$	$\mathbf{2}$
$\mathbf{9}$	$\mathbf{9}$

Most cubes end in the same number as the Ones of the root number.
The four exceptions are 2, 3, 7, and 8. All of them end in the Ten Add of the original Ones digit.

Learning Ten Adds on a Number Wheel

Start at the 5 at the bottom of the number wheel. It is all alone there. You can circle (and double an alone number. $5+5=10$. We have 10 digits (fingers) and 10 digits (numbers) and our number system is ten based BECAUSE humans have 10 fingers.
To be more flexible, have five pennies in each hand. Again $5+5=10$.
Now put one penny from the right hand into the left hand. We still have 10 pennies, but now $6+4=10$.
Now put another penny from the right hand into the left hand. We still have 10 pennies, but now $7+3=10$.
Now put another penny from the right hand into the left hand. We still have 10 pennies, but now $8+2=10$.
Now put another penny from the right hand into the left hand. We still have 10 pennies, but now $9+1=10$.
Now put the last penny from the right hand into the left hand. We still have 10 pennies, but now $10+0=10$.
On the number wheel horizontal parallel lines show us the Ten Adds.

Nine Adds

Look at the Ten Adds on a number Wheel. Raise all the right side up one number to create Nine Adds. Again we have parallel lines and the numbers linked not only show all the numbers adding up to 9: 0-9, 18, 2-7, 3-6, 4-5, 5-4, 6-3, 7-2, 8-1, 9-0 as we go around, but they also are revealing the Nines times table: 9-18-27-36-45-54-63-72-81-90. See the Nines Add Wheel

Coloring
 Numbers:
 Single and
 Ten-Adds

Originals by Jacob Marsh

[^0]: Multiplying 20×20 tables mentally: This system fills in all the big facts. Use multiplication for smaller facts. Remember: you only need to know the SN and how far apart they are. Can be expanded to $50 \times 50!$ Enjoy! MisterNumbers

[^1]: Numbers 5 apart：Find Green Box on diagonal（Square－4）＋SN How would you find the numbers in the next red boxes？© 2015MisterNumbers Pattern Play Math

[^2]: EIGHTS $\begin{array}{cc}\| & \| \\ 11 & \infty \\ \times & x \\ \infty & \infty\end{array}$ 11
 N
 ∞
 ∞

 $\begin{array}{ccc}\| & \| & \| \\ \underset{\infty}{\infty} & -1 & \infty \\ \infty & \times & \times \\ \infty & \infty & \underset{-1}{*}\end{array}$$\begin{array}{cc}11 & 1 \\ \infty & \infty \\ \times & \\ \times & \end{array}$$\begin{array}{ccccc}\| & \| & \| & \| & \| \\ \infty & m & \infty & \underset{\infty}{\infty} \\ \times & \times & \times & \times & \times \\ \dot{\infty} & \infty & 0 & \infty & \infty\end{array}$

[^3]:

[^4]:

[^5]:

